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Abstract. Suppose a server holds a long text string and a receiver holds
a short pattern string. Secure pattern matching allows the receiver to
learn the locations in the long text where the pattern appears, while
leaking nothing else to either party besides the length of their inputs. In
this work we consider secure wildcard pattern matching (WPM), where
the receiver’s pattern is allowed to contain wildcards that match to any
character.
We present SWiM, a simple and fast protocol for WPM that is heavily
based on oblivious transfer (OT) extension. As such, the protocol requires
only a small constant number of public-key operations and otherwise
uses only very fast symmetric-key primitives. SWiM is secure against
semi-honest adversaries. We implemented a prototype of our protocol
to demonstrate its practicality. We can perform WPM on a DNA text
(4-character alphabet) of length 105 and pattern of length 103 in just
over 2 seconds, which is over two orders of magnitude faster than the
state-of-the-art scheme of Baron et al. (SCN 2012).

1 Introduction

Secure two-party computation allows mutually untrusted parties to perform a
computation on their private inputs without revealing any additional informa-
tion except for the result itself. Over the last few years, secure two-party com-
putation has been extensively studied and has become practical for a variety of
applications. Two adversarial models are usually considered. In the semi-honest
model, the adversary is assumed to follow the protocol, while trying to learn
information from the protocol transcript. In the malicious model, the adversary
can follow an arbitrary polynomial-time strategy. We consider the semi-honest
model in this work.

Pattern matching is a basic problem in secure computation. It has been
extensively studied in the past decade, e.g., [HL08, BEDM+12, DF13, DCFT13,
FHV13, YSK+13, HT14, CS15, YSK+14, WJW+15, WZX17]. Pattern matching
is frequently used in text processing, database search [GHS10, CS15], network
security [NN10], DNA analysis [OPJM10], and other practical algorithms. The
most commonly considered variant of secure pattern matching, which we will
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call exact PM, is the setting where a server with input a text x ∈ Σn (over
some alphabet Σ) interacts with a receiver with input a pattern p ∈ Σm (for
m < n). The receiver learns where the pattern occurs as a substring of the
server’s text without revealing any additional information. There are several
important variants of pattern matching, including approximate pattern matching
and outsourced pattern matching, which we discuss in Section 1.2.

In this work, we focus on secure pattern matching with wildcards, which
we will call WPM. In this variant, the receiver’s pattern can include wildcard
characters that can match any character in the data, hence p ∈ (Σ∪{?})m. With
wildcards, the security requirements are more demanding: the server should not
learn which positions of p contain wildcards, and in the case of a match the
receiver should not learn the text character that matches a wildcard character
in the pattern (unless this could be inferred from the presence or absence of an
overlapping match).

Allowing wildcards in a pattern matching functionality has been well studied
in the absence of a security requirement [CH02, CWZ+06, CLI07, CEPR09,
SOF10, Tha11, BGVV14, BI14, SSSS15, AWY15], and is motivated by the goal
of providing the facility of searching with errors/unknowns. Privacy issues arise
in searching on sensitive data and secure pattern matching with wildcards has
applications, e.g., in computational genetics and DNA analysis. Indeed, consider
the case of a hospital or biomedical research center holding patient genomic
data, and a researcher holding a specific cancer marker sequence with some
errors. The researcher wishes to know the frequency and positions of the gene
occurrences in the database. Due to the genome’s highly sensitive nature, the
hospital is required keep genomic data private, while the researcher needs to
protect specific genome sequence he is working on. The abundance of WPM
applications, such as privacy-preserving DNA matching described above, is our
main motivation for improving the state-of-the-art in secure wildcard pattern
matching.

1.1 Pattern Matching with Wildcards

In this section, we discuss directions and related work that achieves, or can be
naturally used to achieve, the WPM functionality in the semi-honest setting.

Circuit based. Generic secure computation protocols [Yao86, GMW87], allowing
evaluation of arbitrary functions, have seen tremendous performance improve-
ments in the last decade. Modern garbled circuit (GC) protocols evaluate two
million AND gates per second on a 1Gbps LAN. Several garbled circuits for
Pattern Matching and its variants were studied in [JKS08, KM10]. The best
protocol using this technique were proposed by Katz and Malka [KM10]. The
authors showed how to modify Yao’s garbled circuit to solve Pattern Match-
ing where the size of circuit is linear in the (a priori upper bound on the)
number of occurrences of the pattern in text. While it is possible to extend
circuit-based protocol [KM10] to allow wildcards, it would still require a bound
on the number of matches to be provided a priori for the circuit construction.
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When such bound is high or simply unknown, their protocol suffers correspond-
ing performance penalty. The work [KM10] does not provide implementation or
experimental results.

Homomorphic encryption based. To our knowledge, Hazay and Toft [HT10] were
the first to explicitly consider wildcard secure pattern matching. The core idea of
their protocol is that the receiver provides the wildcard positions to the server
in an encrypted form, and the substrings of the server’s text are obliviously
modified so as to match the pattern at those positions. Later, Vergnaud [Ver11]
improved the work of [HT10] by employing Fast Fourier Transform. Both works
rely on the fact that if a pattern bit pi is equal to a text bit ti, then (ti − pi)2
equals 0, and otherwise it is equal to 1. The work of Vergnaud [Ver11] requires
O((n+m)κ2) communication and O(n logm) computational cost in both semi-
honest and malicious settings, where κ is computational security parameters.
As [HT10, Ver11] do not provide the experimental results, we do not compare
execution times with their work.

In 2012, Baron et al. [BEDM+12] proposed an efficient pattern matching
protocol called 5PM, for 5ecure Pattern Matching. 5PM works with character
(non-binary) wildcards, and was the first to provide and accompanying imple-
mentation. The protocol is based on an insecure pattern matching algorithm
proposed by Hoffmann [HHD11]. To obtain a secure pattern matching, 5PM
modifies the algorithm [HHD11] to work with basic linear operations, which al-
lowed instantiation with additive homomorphic encryption. 5PM requires O(nκ)
communication and O(n+m) computational costs in semi-honest setting. In Sec-
tion 5 we compare our performance to that of 5PM and report 2− 499× perfor-
mance improvement even on medium-size instances.

Yasuda et al. [YSK+14] extend the exact pattern matching protocol
of [YSK+13] to support wildcards. The security of [YSK+14] is based on the
polynomial LWE assumption. Their scheme operates by blocks, limited by the
lattice dimension; for larger inputs x, inefficiency is introduced either by using
a larger lattice, or by the difficulty and cost of handling boundaries of blocks.
In [YSK+14], the authors do not present the performance comparison with 5PM
protocol, but indirectly this can be calculated. Yasuda et al. [YSK+14] mention
that their protocol only 4− 5× slower than the protocol [YSK+13], which does
not allow wildcards. In addition, [YSK+13] estimated that their work is about
10× faster than 5PM when using much stronger hardware than 5PM ([YSK+13]
experiments were performed on Intel Xeon X3480 3.07 GHz machine with 16
GB RAM, while 5PM [BEDM+12] used Intel dual quad-core 2.93GHz machine
with 8GB RAM). Putting all together, we conclude that [YSK+14] is approxi-
mately 2 − 2.5× faster than 5PM. In contrast, our protocol is 2 − 499× times
faster than 5PM, while running on weak commodity hardware (same at 5PM, cf.
Section 5.1); this translates into the corresponding improvement over [YSK+14]
as well. Further, our approach is simpler and easier to implement.

We mention recent work of Saha and Koshiba [SK17], which improves on the
work of [YSK+14] by proposing a new packing method that efficiently addresses
continuous wildcards occurring in the pattern (e.g., pattern 10????01???110 has
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k = 3 sub-patterns: 10, 01, and 110). The main idea of their packing method
is to let the receiver break down the pattern into k sub-patterns and have the
parties perform the traditional pattern matching on these patterns. This solution
is about k× faster than previous work [YSK+14]. However, it reveals significant
information about the pattern, especially for larger k.

1.2 Variants of Pattern Matching

For completeness, we briefly discuss work on several additional variants of secure
pattern matching.

Exact pattern patching. To our knowledge, Troncoso-Pastoriza et al. [TPKC07]
were the first to consider secure pattern matching. Their protocol is based on
oblivious automaton evaluation. The protocol [TPKC07] requires O(nm) com-
munication and computational cost. Several follow-up works [Fri09, MNSS12]
improved the computational cost and reduced the round complexity. Another line
of work [HL08, GHS10] is based on oblivious pseudorandom functions (OPRF),
and obtains security in the malicious setting using O(nm) communication and
computational cost with O(m) rounds. De Cristofaro et al. [DCFT13] consider
a secure and efficient pattern matching protocol which hides the length of the
pattern.

Approximate/fuzzy pattern matching. The functionality of this problem is to
find the text positions matches approximately (rather than exactly). This prob-
lem can be solved by determining whether the Hamming distance between
each text substring and the pattern is less than a threshold t. Hazay and
Toft [HT10, HT14] proposed a malicious-secure solution with O(nt) commu-
nication and O(nm) computation costs.

Outsourcing pattern matching. In this setting, parties outsource their encrypted
data and computation to an untrusted server, while maintaining data privacy.
The main goal here is to minimize the communication and computational over-
head of the parties by relying on the powerful resources of the untrusted server.
The first work that considered secure pattern matching in the cloud setting can
be traced back to Faust et al. [FHV13]. Other follow-up works are [WJW+15].
Recently, Wei et al. [WZX17] proposed an efficient solution by combining a se-
cret sharing scheme and oblivious transfer which requires O(κ) computation and
O(mn) communication costs. Outsourcing pattern matching can be viewed as
substring searchable encryption which are studied in [CS15, ÇCL+17]

2 Overview of Our Results & Techniques

In this work we present SWiM (Secure Wildcard Pattern Matching ), a protocol
for WPM based on two fast cryptographic tools: oblivious transfer and secure
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Protocol
Computation Communication Rounds Security
Online Offline Online Offline Online Offline Model

[Ver11] O(n logm) O((m+ n)κ2) O(1) semi-honest & malicious

[BEDM+12] O(m+ n) O(nκ) 2 semi-honest

Ours 0 O(κ) O(m+ (λ+ κ)n) O(nm) 2 2 semi-honest

Table 1. Communication (bits) and computation (number of exponentiations) com-
plexities of WPM protocols in the semi-honest setting, where n is length of text,m
is length of pattern; and λ and κ are the statistical and computational security pa-
rameters, respectively. λ = 40 and κ = 128 in our protocols, while κ is in the range
1024-2048 in [Ver11, BEDM+12] protocols (due to their use of public-key primitives).

string equality test (given two strings of equal lengths, without wildcards, de-
termine whether they are equal). Thanks to recent optimizations in oblivious
transfer protocols [Bea96, IKNP03, KK13, ALSZ13], it is possible to realize a
large number of OT instances with amortized cost of only a few µs. Kolesnikov et
al. [KKRT16] give a protocol for secure string equality test based on techniques
for efficient OT. With their protocol, one can perform many private equality
tests with amortized cost of 5 µs.

Overview of techniques. Suppose the sender holds a string x ∈ {0, 1}∗ and the
receiver holds a pattern p ∈ {0, 1, ?}∗.

As a very simple warm up, consider the case that |x| = |p| = 1. The receiver

will first encode its pattern p ∈ {0, 1, ?} as a pair of bits (
?
p,p) (“p-star &

p-bar”), using the following encoding:

p
?
p p

? 1 0
1 0 1
0 0 0

(1)

The significance of this encoding is the following:

x matches pattern p ⇐⇒ x =
?
p · x⊕ p (2)

Indeed, if p = ?, then (
?
p,p) = (1, 0), so the RHS of (2) simplifies to x and the two

sides equal (regardless of x). On the other hand, if p 6= ?, then (
?
p,p) = (0,p),

so the RHS simplifies to p and the two sides equal if and only if p = x.
Our next trick is to blindly evaluate equation (2) using a single OT evalua-

tion. The parties invoke an instance of 1-out-of-2 bit-OT, where the sender gives

inputs (k,k⊕x), and the receiver gives input
?
p. Here k is a random bit chosen

by the sender. Note that the receiver’s output from this OT is k ⊕ ?
p · x.

Now, adding k to both sides of the equation in (2), we have that x matches

pattern p, if and only if k ⊕ x = (k ⊕ ?
p · x) ⊕ p. Importantly, the LHS of this

equation is known to the sender, while the RHS is known to the receiver. At the
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OT

x 0 0 1 1 1 0

k 1 0 0 1 0 1

k ⊕ x 1 0 1 0 1 1

}
p ? ? ? 1 1 0

?
p 1 1 1 0 0 0
p 0 0 0 1 1 0

k ⊕ ?
p · x 1 0 1 1 0 1

1 0 1 0 1 1

⊕

strings equal ⇔ x matches p

Fig. 1. Illustration of the main idea behind our protocol: using oblivious transfer and
private string equality test to perform private string equality with wildcards.

same time, the random mask k hides all information about x from the receiver.
We can summarize the above gadget as follows: using a single OT of bits, the
sender and receiver each compute a bit which is the same bit if and only if x
matches pattern (possibly wildcard) p.

This technique can be easily extended to the case of WPM with |x| = |p| = n
by simply doing the above gadget n times, bit-by-bit. After doing so, each party
will hold an n-bit string (without wildcards); these two strings will be equal
if and only if x matches the pattern p. An example is given in Figure 1 (we
simply extend the notation ⊕ and · to bit-vectors). In short, we have reduced the
problem of WPM with |x| = |p| to the problem of secure (exact, no wildcards)
equality test of strings. We complete the wildcard pattern matching by actually
testing the equality of these strings, using the efficient protocol of Kolesnikov et
al. [KKRT16].

The security of this protocol (in the semi-honest model) is easy to understand:

the only new information is that the receiver obtains output k ⊕ ?
p · x, which

leaks no information about the sender’s input x since k is uniform. Now consider
extending this approach to the general case of WPM with |x| > |p|. The idea
is the natural one: for each i ∈ {1, |x| − |p| + 1} simply perform the above
approach on the substring x[i . . . i+ |p| − 1] and p. Unpacking the abstractions
reveals room for optimizations, as follows. While the previous constructions were
presented in terms of OT of bits, the OT of strings is significantly more efficient
in practice. We observe that in each subprotocol, the receiver’s OT choice bits

are always the same
?
p, allowing corresponding OT instances to be combined

easily. Hence instead of |p|(|x| − |p| + 1) instances of bit-OT, we can use |p|
instances of string-OT, with strings of length |x| − |p| + 1. This optimization
actually reduces costs by a multiplicative factor of the security parameter. The
details are given in Section 4.

In Section 4.1 we present additional optimizations and extensions, such as
moving almost all of the cost to the offline, amortization and efficient handling
of non-binary alphabets.
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Efficiency. SWiM requires only O(κ) public-key operations (all in the offline
phase). In terms of communication, our protocol requires O(mn) in the offline
phase, but only O(m + (λ + κ)n) in online phase. Here, κ, λ are the computa-
tional and statistical security parameters, respectively. As noted previously, all
constants under the big-O are small, as we use fast optimized building blocks. We
describe the performance of representative Secure Wildcard Pattern Matching
protocols in Table 1.

We note that SWiM is efficient concretely. This is because we carefully opti-
mize both computation and communication. Further, we use algorithmically-
and implementation-optimized building blocks, namely the OT extension
of [ALSZ13] and private equality test of [KKRT16]. In particular, the [KKRT16]
equality test is independent of the length of the players’ inputs.

This significantly improves over the state-of-the-art secure wildcard pattern
matching protocol of [BEDM+12]. In Section 5, we report in detail on implemen-
tation and evaluation, and find that SWiM is a 2− 499× faster than 5PM, and
continues to scale well on larger instances. 5PM considers WPM instances on
DNA text of length up to 105 and pattern of length up to 103. These larger in-
stances require only 1.96 seconds in our protocol, in comparison with 304.53 sec-
onds with 1024-bit key and 978.94 seconds with 2048-bit key using [BEDM+12].

3 Preliminaries

3.1 Notation

Throughout the paper we use the following notation: The length of the text is
n, while the length of the pattern is m. Wildcard is denoted by ?. The computa-
tional and statistical security parameters are denoted by κ, λ, respectively. [m]
to denote a set {1, . . . ,m}.

The notation OTm denotes a 1-out-of-2 OT where the string is m bits long.
We denote vectors in bold a, and matrices in capitals A. For the vector, we let
a[i,j] denote the sub-vector of a from i-th bit to j-th bit, and ai denote the i-th
bit of vector a. Given vectors a = a1‖ · · · ‖an and b = b1‖ · · · ‖bn, we define
⊕ and · operations as follows. We use the notation a ⊕ b to denote the vector
(a1 ⊕ b1)‖ · · · ‖(an ⊕ bn). Similarly, the notation a · b denotes the vector (a1 ·
b1)‖ · · · ‖(an ·bn). Let c ∈ {0, 1}, then c ·a denotes the vector (c ·a1)‖ · · · ‖(c ·an).
For a matrix A, we let ai denote the i-th row of A, aj denote the j-th column
of A; Aji denote the entry of A at the i-th row and the j-th column.

Consider an alphabet Σ. We define a pattern matching relation � via
the following rules: (1) a � a for a ∈ Σ; (2) ? � a for a ∈ Σ. We extend the
notation to vectors as x � y ⇔ (∀i)xi � yi. If p � x we say that x matches
the pattern p.

3.2 Oblivious Transfer

Oblivious Transfer (OT) is a ubiquitous cryptographic primitive, and neces-
sary for secure computation, which was introduced by Rabin [Rab05]. In OT, a
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Parameters: A bit length m, and two parties: sender S and receiver R

Functionality:

• Wait for pair-input (x0,x1) ⊆ {0, 1}m from the sender S
• Wait for bit-input b ∈ {0, 1} from the receiver R
• Give output xb to the receiver R.

Fig. 2. Oblivious Transfer functionality OTm.

Parameters: Two parties: sender S and receiver R

Functionality:

• Wait for input x0 ∈ {0, 1}∗ from the sender S.
• Wait for input x1 ∈ {0, 1}∗ from the receiver R.
• Give the receiver R output 1 if x0 = x1 and 0 otherwise.

Fig. 3. The Private Equality ideal functionality Fpeqt

Parameters: A text length n, a pattern length m, and two parties: sender S and
receiver R

Functionality:

• Wait for text x ∈ {0, 1}n from the sender S
• Wait for pattern p ∈ {0, 1, ?}m from the receiver R
• Give the receiver R output {i ∈ [n−m+ 1] | p � x[i,i+m−1]} (see Section 3.1

for notation)

Fig. 4. Wildcard Pattern Matching functionality Fn,m
wpm .

sender with two input strings (x0, x1) interacts with a receiver who has a input
choice bit b. In a privacy-preserving way, the receiver learns xb without learning
anything about x1−b, while the sender learns nothing about b. Rabin’s proto-
col requires expensive public key cryptography. Ishai et al. [IKNP03] proposed
OT extension, an efficient protocol that evaluates a small number of expensive
OTs, from which a large number of OTs can be performed using only cheap
symmetric-key operations. OT extension, to which we sometimes refer as IKNP,
has become a core building block in many aspects of secure computation such as
Garble Circuit, Private Set Intersection [PSZ14, KKRT16, KMP+17], Hamming
Distance [BCP13]. We describe the ideal functionality for OT in Figure 2.

Despite the wide use of OT, there are very few improvement of IKNP OT
protocol in semi-honest setting. In 2013, Kolesnikov and Kumaresan [KK13] pro-
posed an generalization of IKNP OT extension for short secrets, which brought
O(log(κ)) factor performance improvement in communication and computation,
where κ is security parameter. They also proposed an IKNP optimization, sav-
ing on the auxiliary matrix transfer. Later same year, Asharov et al. [ALSZ13]
proposed several IKNP optimizations (one of which was the optimization inde-
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pendently discovered by [KK13]). Importantly, [ALSZ13] also provided optimized
implementation of (improved) IKNP OT protocol.

[ALSZ13] also presented optimizations for a useful variant of OT. In Corre-
lated OT (COT), the sender’s OT inputs x0, x1 are chosen randomly subject to
x0⊕x1 = ∆, where ∆ is chosen by the sender (possibly a different ∆ for each OT
instance). In this case, it is possible to let the protocol itself “choose” the value
x0 randomly. Doing so reduces the bandwidth requirement by approximately
half. It is easy to see that we require only this weaker variant of OT for pattern
matching, hence our implementation takes advantage of this optimization.

3.3 Private Equality Test

Definition. A Private Equality Test (PEQT) is a 2-party protocol in which
the sender with input string x0 interacts with a receiver with input string x1

in the following way. The receiver learns a bit indicating whether x0 = x1 and
nothing else, while the sender learns nothing about x1. We describe the ideal
functionality for an PEQT in Figure 3.

To our knowledge, PEQT was first introduced in 1996 by Fagin, Naor, and
Winkler [FNW96]. Follow-up works[NP99, BST01, Lip03] improved the effi-
ciency of PEQT, while still relying on expensive public-key operations. PEQT is
heavily used in two-party private set intersection (PSI) protocols [FNP04]. Re-
cently, Kolesnikov et al. [KKRT16], in the context of PSI proposed an efficient
PEQT, which was constructed by applying novel encodings inside the OT exten-
sion matrix. Their protocol, cast as a variant of Oblivious PRF, executes many
PEQT instances by using only cheap symmetric cryptographic operations, apart
from base OTs. Concretely, the amortized cost of each PEQT instance with un-
bounded input domain {0, 1}∗ is only a few symmetric-key operations and 488
bits in communication. We heavily rely on the high-performing PEQT protocol
of [KKRT16] in this work.

4 SWiM: the Main Construction

We present SWiM, our main construction for the WPM functionality in Figure 4.
It closely follows and formalizes the high-level overview presented in Section 2.
For readability, we present SWiM for binary alphabet Σ = {0, 1}. In Section 4.1
we show how to easily extend it to an arbitrary Σ. We first run OT extension
with the chosen inputs defined in Figure 2, which will allow the receiver to

compute α = k ⊕ ?
p · x ⊕ p. Recall, as discussed in Section 2, x matches p, iff

α equals to k⊕x held by the sender. This equality is efficiently checked in bulk
by calling instances of Private Equality Test defined in Figure 3, with the result
delivered to the receiver and output. The SWiM protocol is presented in Figure 5
and is proven secure against semi-honest adversaries.

Correctness. The main observation of OT-extension is that the receiver obtains
output qi such that:
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Parameters:

1. Two parties: sender S and receiver R
2. A length n of text, a length m of pattern. Define n′ = n−m+ 1
3. A repetition encoding C : {0, 1} → {0, 1}n

′
defined by C(a) = an

′
for a ∈ {0, 1}.

4. Ideal OT and Fpeqt primitives defined in Figure 2 and Figure 3, respectively.

Input of S: a text x ∈ {0, 1}n

Input of R: a pattern p ∈ {0, 1, ?}m encoded into p,
?
p ∈ {0, 1}m, as described in Section 2.

Protocol:

1. [Random Keys] S chooses {ki}i∈[m] ← {0, 1}n
′

at random
2. [OT] For each i ∈ [m], S and R invoke OTn′ -functionality

(a) R acts as receiver with a input-bit
?
pi.

(b) S acts as sender with a ordered pair input (ki,ki ⊕ x[i,i+n′−1])
(c) R receives output qi

3. [Matrix Form]
(a) S forms m×n′ matrix T such that the i-th row of T is the vector ti = ki⊕x[i,i+n′−1]

(b) R forms m×n′ matrix U such that the i-th row of U is the vector ui = qi⊕C(p̄i)
4. [PEQ]

(a) For each i ∈ [n′], S and R invoke the Fpeqt-functionality:
• S acts as sender with input ti as the i-th column of T
• R acts as receiver with input ui as the i-th column of U

(b) R outputs {i ∈ [n′] | ith instance of Fpeqt outputs 1}

Fig. 5. SWiM: Secure Wildcard Pattern Matching Protocol for Σ = {0, 1}.

qi = ki ⊕
?
pi · x[i,i+n′−1] =

{
ki, if

?
pi = 0

ki ⊕ x[i,i+n′−1], if
?
pi = 1

Therefore, the i-th row of U is equal to ui = ki ⊕
?
pi · x[i,i+n′−1] ⊕ C(p̄i).

Let K denote the m × n′ matrix such that the i-th row of K is the vector ki.
When viewing the matrices U and T column-wise, we see that the receiver holds

ui = ki⊕ ?
p ·x[i,i+m−1]⊕p while the sender holds ti = ki⊕x[i,i+m−1]. Following

the high-level idea described Section 2, and specifically the pattern match test
of Equation 2, it is clear that the pattern matches the text x at the i-th position
if and only if ui = ti.

Theorem 1. The SWiM protocol in Figure 5 securely computes the WPM func-
tionality (Figure 4) in semi-honest setting, given the ideal OT and Fpeqt primi-
tives defined Figure 2 and Figure 3, respectively.

Proof. The proof of security of our construction is based on the fact that the
OT and Fpeqt are secure.
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Simulating S. It is easy to argue that the view of the sender S can be perfectly
simulated since the semi-honest S receives nothing from the protocol.

Simulating R. The view of the receiver R consists of two kinds of messages:
(1) output of the form qi from the OT primitive in Step 2c, which is equal to

ki ⊕
?
pi · x[i,i+n′−1] and hence information-theoretically hides x; (2) outputs of

Fpeqt in step 4b, which correspond exactly to the WPM protocol output itself.
Hence both can be perfectly simulated.

Cost. Using OT extension, some initial “base OT” instances are required. These
base OTs consist of O(κ2) communication and O(κ) exponentiations. Thereafter,
any number of OTs can be obtained with communication and computation pro-
portional only to total size of parties’ inputs. The computation consists of only
symmetric-key operations. In our case, there are m OT instances, each on strings
of length n′, so O(n′m) total communication and symmetric-key operations.

The Fpeqt protocol of [KKRT16] has a statistical security parameter which
we denote λ. Specifically, the protocol allows for a false positive (output 1 for
input strings which are different) with probability 2−λ. The protocol also uses OT
extension, but the base OTs can be shared/reused from the base OTs mentioned
above. The amortized cost of an equality test is 448 + λ bits of communication
(using typical parameters) and a constant number of symmetric-key operations.

4.1 Additions, optimizations

Online/offline phase. We briefly describe how the protocol can be modified so
that most of the cost can be incurred in an offline phase, before the parties’
inputs are known.

First, we can run all OTs in Step 2 of the protocol before the receiver’s input
p is known, by taking advantage of a well-known technique of Beaver [Bea95].
The following modifications are required: First, the receiver uses a random π ∈
{0, 1}m (rather than

?
p) as its OT choice bits in Step 2 (note that p is not used

until Step 3). Later, upon learning p, the receiver sends δ = p⊕π to the sender.
The sender sets k′i = ki ⊕ δi ·x[i,i+n′−1]. It is easy to see that the receiver holds

qi = ki ⊕ πi · x[i,i+n′−1] = ki ⊕ (δi ⊕
?
pi) · x[i,i+n′−1] = k′i ⊕

?
pi · x[i,i+n′−1].

In other words, k′i and qi satisfy the appropriate condition, now with respect to
the receiver’s true input p. The rest of the protocol continues as usual, with k′i
instead of ki.

There is also a standard Beaver technique for preprocessing OTs before the
sender’s OT input is known. Applying here naively would require the sender to
send online correction strings of total length O(|p||x|) since that is the combined
length of all the sender’s OT inputs.

Instead, we propose the following technique that is similar in spirit but takes
advantage of the fact that the sender’s OT inputs are derived from a single x
value. The parties run step 1, but with the sender using a random χ ∈ {0, 1}n
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instead of the true input x (which is not yet known). After the online phase
described above, the sender will have k′i strings and the receiver will have qi =

k′i ⊕
?
pi · χ[i,i+n′−1]. As the sender learns its input x, it sends γ = x⊕ χ to the

receiver. The receiver can compute

q′i
def
= qi ⊕

?
pi · γ[i,i+n′−1] = (k′i ⊕

?
pi · χ[i,i+n′−1])⊕

?
pi · γ[i,i+n′−1]

= k′i ⊕
?
pi · (χ[i,i+n′−1] ⊕ γ[i,i+n′−1])

= k′i ⊕
?
pi · x[i,i+n′−1]

In other words, k′i and q′i satisfy the appropriate condition, now with respect to
the sender’s true input x. The protocol can proceed, using q′i instead of qi.

By having precomputation, we are able to shift the bulk of the O(nm) com-
munication to the offline phase. In the online phase, each party only sends a
“correction string” whose length is proportional to its input size, followed by
the equality tests. Similarly to the standard Beaver’s technique, it is easy to see
that the resulting protocol is secure, namely that the separation of the offline
and online phases can be simulated.

Amortization. In certain multiple-execution scenarios, the cost of our protocol
can be further significantly reduced by reusing the OT/PEQT outputs.

First, notice that in SWiM (Figure 5), the OT step is independent of the non-
wildcard characters of the pattern string (i.e., independent of p). Therefore, if the

positions of wildcards in the receiver’s pattern (i.e.,
?
p) are the same across several

executions, OT in subsequent executions can be implemented as length extension
of the OT in the first execution. Further, if additionally the sender’s text is the
same across the executions (and the only variation is the non-? pattern), then
only the equality tests need to be run in the subsequent executions.

Further, in the PEQT protocol of [KKRT16], the receiver can check his input
for equality against a polynomial number sender’s inputs at the cost λ per check
(vs 4κ + λ for full KKRT PEQT). Indeed, on the KKRT BaRK-OPRF output
(R,S) ← (Fk(x), k), KKRT sender S can send to receiver R a set of {Fk(yi)},
and R will determine x = yi ⇐⇒ Fk(x) = Fk(yi).

To use this in the amortization, we let the WPM sender play the role of
PEQT’s receiver. We note that this amortization will reveal whether the WPM
receiver has used the same pattern in different instances. Additionally, PEQT
receiver learns the comparison output, and so will the WPM sender. Both re-
strictions may be acceptable in certain scenarios.

Non-binary alphabets. The protocol extends naturally to alphabets Σ beyond
Σ = {0, 1}. Without loss of generality let Σ = Zb for some b. The receiver holds

a pattern p ∈ (Σ ∪ {?})m and will encode the pattern into
?
p ∈ {0, 1}m and

p ∈ Σm, as follows:

pi
?
pi pi

? 1 0
a 6= ? 0 a
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Consider the corresponding amendment to SWiM (Figure 5), where the parties
hold strings of length m and n, both over the alphabet Σ. The parties still

perform m 1-out-of-2 OT, using
?
p as the receiver’s choice bits. All other vectors

(k, q, etc) become vectors over Σ, and the ⊕ operation is replaced by component-
wise addition mod |Σ|. Note that the “·” operation in the protocol is only used

between a binary vector
?
p and a Σ-vector, so its meaning can still be taken

as component-wise multiplication. Finally, the KKRT PEQT can be naturally
amended to support equality tests of non-binary strings, e.g. by translating the
strings into binary.

5 SWiM Implementation and Performance

Our SWiM implementation uses code from [KKRT16, Rin, WMK16]. All running
times are reported as the average over 10 trials. Our complete implementation
is available on https://github.com/osu-crypto/PatternMatching.

5.1 Experimental Performance: Comparison with Prior Work

We compare our prototype to the state-of-art WPM protocols [BEDM+12,
YSK+14]. While the implementations [BEDM+12, YSK+14] are not publicly
available, [BEDM+12] reports experimental numbers. Further, as we dis-
cussed in Section 1.1, [YSK+14] numbers can be indirectly estimated to be
around 2− 2.5× faster than 5PM. We give detailed comparisons to 5PM proto-
col [BEDM+12]; comparison to other works can be appropriately derived.

Runtime Comparison. For the most direct comparison, we matched the test
system’s computational performance to that of [BEDM+12], as reported in their
Table 13. Since 5PM [BEDM+12] experiments were performed on Intel dual
quad-core 2.93GHz Linux machine with 8GB RAM, we evaluate our protocol on
a virtual Linux machine with 8GB RAM and 2 cores (the host machine is Intel
Core i7 2.60GHz with 12GB RAM). Table 2 presents the running time of our
protocol compared with 5PM [BEDM+12]. For our protocol, we report both the
total running time and the online time. We use dlog(Σ)e bits to encode the text
and pattern alphabet into binary alphabet.

When comparing the two protocols, we find that the total running time of
SWiM is significantly less than that of the prior works, requiring 1.96 seconds
to perform a wildcard pattern matching with 4-symbol alphabet for text size
n = 105 and pattern size m = 103. This is a 155× improvement in running time
compared to 5PM [BEDM+12] which used 1024-bit key length. When considering
5PM [BEDM+12] with 2048-bit key length (which better corresponds to our
security level), our improvement is 499×.

SWiM is optimized for the typical use case, where the length of the text is
greater than that of the pattern. If this doesn’t hold (indeed, an unusual set-
ting for the motivating examples we consider), our performance improvement is
moderate. For instance when m = n = 103, our protocol requires 0.61 seconds.
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Using the same parameters, the protocol of [BEDM+12] results in an execution
time of 1.39 seconds. The moderate 2× improvement is due to the constant-cost
overheads of OT extension and PEQT, which do not pay off without amorti-
zation in a larger execution. Even in these cases, our protocol achieves great
improvement in the online phase (e.g., running in just 3ms for m = n = 103).

Bandwidth Comparison. We calculate the bandwidth requirements of our pro-
tocol on the range of the length text n ∈ {216, 218, 220, 222} and the length
pattern m ∈ {28, 210, 212, 214}, for the binary alphabet. For comparison, we cal-
culate the communication cost of 5PM [BEDM+12], for the same parameters.
5PM bandwidth requirements is independent on the length of pattern, and is
roughly (n + 2)κ bits. 5PM protocol relies on public-key operations, and needs
1024-2048-bit key lengths.

Table 4 reports the communication overhead of the protocols. Our protocol
requires less communication for smaller pattern sizes. Concretely, for n = 222

and m = 28, our protocol requires 392.1 MB of communication, a 1.37 to 2.7×
improvement compared to 5PM [BEDM+12]. Increasing the pattern length to
m = 212 the communication cost of 5PM protocol (at a great performance
penalty!) becomes preferable to ours, since their bandwidth is independent of
the length of pattern. Note, the bulk of the communication cost in our protocol
is OT extension in the offline phase.

We note that Table 4 does not show off SWiM algorithmic improvement
for non-binary alphabet, which reduces the number of OT calls. For larger Σ,
we (but not other approaches, to our knowledge) get factor ≈ log |Σ| bandwidth
reduction in the offline phase over the simple mapping of Σ to a binary alphabet.

5.2 SWiM performance at scale: experiments and discussion

To understand the scalability of SWiM, we evaluate it on the range of the
text/pattern lengths n ∈ {216, 218, 220, 222, 224}, m ∈ {28, 210, 212, 214}, for the
binary alphabet. We report SWiM detailed performance results in Table 3, show-
ing total running time and online time in both LAN and WAN settings.

This set of experiments was ran on a larger machine (a single server with 2x
36-core Intel Xeon 2.30GHz CPU and 256GB of RAM), whose resources were
carefully limited by us to provide a good understanding of the performance.
Specifically, we ran each party single threaded, both on the same machine, com-
municating via localhost network. We simulated a network connection using
the Linux tc command. We configured LAN setting with 0.02ms round-trip la-
tency, 10 Gbps network bandwidth, and WAN setting with a simulated 40ms
round-trip latency, 400 Mbps network bandwidth.

The step of forming the matrices in SWiM is relatively costly. We push it into
the preprocessing phase, which will include creating OT matrices and performing
the matrix transposition. Our experiments show that the offline phase takes
60 − 90% of the total running time. For instance, with text size n = 222 and
pattern size m = 214 our overall running time is 60.10 seconds with an offline
phase of 53.64 seconds, a 89% of the overall cost.
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Protocol
Bit key Pattern Text length n
length length m 103 104 105

5PM

1024
10 0.42 4.08 40.43
102 0.67 6.81 64.76
103 0.39 29.15 304.53

2048
10 1.50 14.18 140.52
102 2.27 22.37 216.27
103 1.39 92.29 978.94

SWiM 128
10 0.29 (0.006) 0.36 (0.03) 0.76 (0.32)
102 0.37 (0.005) 0.62 (0.09) 1.82 (0.49)
103 0.61 (0.003) 0.73 (0.04) 1.96 (0.39)

Table 2. 5PM vs SWiM. Comparison of 5PM and SWiM of the total runtime (in
seconds) for wildcard pattern matching of length n, the pattern of length m, and the
alphabets of sizes 4 (DNA). In SWiM, the online time is presented in parenthesis. Best
results marked in bold. SWiM experiment ran on Intel Core i7 2.60GHz with 8GB
RAM. 5PM timings reported on comparable hardware.

Setting
Pattern Text length n

length m 216 218 220 222 224

LAN

28 0.21 (0.04) 0.40 (0.15) 0.94 (0.48) 4.07 (2.78) 16.11 (11.38)
210 0.24 (0.03) 0.48 (0.12) 1.41 (0.57) 5.21 (2.38) 20.61 (10.00)
212 0.37 (0.03) 0.97 (0.17) 3.40 (0.78) 12.92 (3.34) 51.88 (14.44)
214 1.02 (0.07) 3.91 (0.37) 15.14 (1.66) 60.10 (6.46) 246.24(43.51)

WAN

28 1.04 (0.40) 1.90 (1.02) 5.10 (3.10) 17.84 (12.04) 70.45 (48.43)
210 1.28 (0.40) 2.81 (0.95) 8.62 (3.04) 31.29 (12.00) 127.92 (48.08)
212 2.28 (0.36) 6.46 (0.96) 21.61 (3.17) 84.52 (12.48) 363.06 (50.15)
214 6.16 (0.34) 22.24 (1.07) 85.98 (3.87) 318.23 (15.45) 1,382.03 (65.86)

Table 3. SWiM scaling. Total running time and online time (in parenthesis) in second
of SWiM for the text of length n, the pattern of length m, binary alphabet. The results
mentioned in the discussion is marked in bold. Experiment ran sender and receiver
single-threaded on 2x 36-core Intel Xeon 2.30GHz CPU and 256GB of RAM.

Protocol
Bit key Pattern Text length n
length length m 216 218 220 222

5PM
1024 {28, 210, 212, 214} 8.4 33.5 134.2 536.9
2048 {28, 210, 212, 214} 16.8 67.1 268.4 1073.7

SWiM 128

28 7.6(3.9) 25.9(16.1) 99.2(64.1) 392.1(256.4)
210 13.7(3.9) 50.9(15.9) 199.7(64.1) 794.6(256.3)
212 36.7(3.7) 149.5(15.8) 600.2(63.8) 2403.1(256.1)
214 105.2(2.9) 519.9(15.1) 2178.6(63.1) 8813.3(255.4)

Table 4. Bandwidth. calculation of communication (in MB) for wildcard pattern
matching of text length n, pattern length m, binary alphabet. In SWiM, the online
communication cost is presented in parenthesis. Compared to 5PM, best results marked
in bold.
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We find that SWiM scales well in the experiments. For text size n = 216 and
pattern size m = 28, our protocol takes only 0.21 seconds in which 0.04 seconds
is for online time. When increasing the lengths to n = 224 and m = 212, we see
that our protocol requires roughly 52 seconds in total.

When evaluating our implementation in the WAN setting, we still have a fast
online phase due to the fact that OTs can be precomputed in the offline phase.
For n = 224 and m = 212, we obtain an overall running time of 363.06 seconds
and an online time of 50.15 seconds which contains only 13% of the total cost.
For the small text and pattern, the protocol requires only a few seconds. With
n = 216 and m = 28, our protocol takes an overall running time of 1.04 seconds
with the online phase requiring 0.4 seconds.
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