
Not So Predictable Mining Pools:
Attacking Solo Mining Pools by Bagging Blocks

and Conning Competitors

Jordan Holland, R. Joseph Connor, J. Parker Diamond, Jared M. Smith, and
Max Schuchard

Department of Electrical Engineering and Computer Science
UT Computer Security Laboratory

University of Tennessee, Knoxville, TN, USA
{jholla19,rconnor6,jdiamon3,jms,mschucha}@utk.edu

https://volsec.eecs.utk.edu

Abstract. In this paper we present three attacks against the predictable
solo mining (PSM) scheme. In PSM, miners receive shares for submit-
ting partially valid solutions to the current Proof of Work, adding those
shares to their account. When the pool successfully mines a block, the
block is awarded to the miner with the most shares, and the rewarded
miner “pays” an amount of shares equal to the next highest miner’s to
claim the block. Our attacks take advantage of the fact that the amount
of shares expended winning two different blocks, which have the same
monetary value, can vary by up to a factor of four. We show that by
strategically spreading its shares across multiple accounts, a malicious
miner can generate more revenue than a naive miner of the same compu-
tational power by only claiming blocks with a low share cost. By doing
so, a miner can reduce computational power it must expend to win a
block by more than 30%. Our other two attacks reduce the profitability
of victim miners in the pool by minimizing the gap between first and
second place when the victim wins a block. This drives up the average
amount of computational power the victim must contribute to receive a
reward. An adversary not concerned with cost can reduce the number of
shares a victim retains after winning a block by up to 26%. We also find
that an adversary with more computational power than their victim can
reduce the number of shares the victim retains after winning a block by
more than 8% with only limited impact on the adversary’s profitability.

1 Introduction

Cryptocurrency mining represents a several hundred million dollar a year in-
dustry. As a point of reference, Bitcoin miners alone generated 563 million US
dollars worth of revenue in 2016 [10]. The increasing popularity and profitability
of cryptocurrency mining has resulted in an exponential increase in the total
computational power dedicated to the task. For example, the cryptocurrency
Ethereum has seen a more than 18 fold increase in overall network hashrate be-
tween September 2016 and September 2017 [5]. This increase in overall network

https://volsec.eecs.utk.edu


2 Holland, Connor, Diamond, Smith, and Schuchard

compute power means that individuals possessing small amounts of computa-
tional resources find themselves unable to consistently generate mining revenue.
As a result, miners often opt to join mining pools where they aggregate their
computational resources in an effort to receive a consistent, reliable income pro-
portional to their contribution to the pool.

The payout scheme of a mining pool decides how to distribute the pool’s rev-
enue between individual miners. Ideally, a payout scheme should demonstrate
proportional fairness, where miners receive rewards proportional to their con-
tribution to the pool. Additionally, pool operators want a payout scheme that
is incentive compatible between themselves and their miners. Specifically, the
miner’s best strategy should be that they dedicate all of their computational re-
sources towards the pool, resulting in maximized revenue by both miner and pool
operator. With the number of different mining pools increasing, so too has the
number of different payout schemes that are implemented by these pools. Many
of these schemes are not vetted for incentive compatibility or fairness, result-
ing in attacks against deployed payout schemes which break either proportional
fairness or incentive compatibility [17,7,15].

In this paper we present three attacks against a relatively new payout scheme,
the predictable solo mining (PSM) scheme. Unlike other payout schemes that
split each won block between all mining participants, PSM awards the entire
block to the miner that currently has saved the most “computational credit”
or shares. The winning miner’s shares are then adjusted to be the difference
between their current shares and the next highest miner’s shares. This payment
scheme results in a variance in the number of shares “needed” to win a block,
even when the pool’s computational power is held constant. Our attacks take
advantage of the fact that the amount of shares expended winning two different
blocks, which have the same monetary value, can vary by up to a factor of four.
By strategically adjusting our malicious miner’s behavior, we can exclusively
take advantage of highly efficient blocks, while at the same time forcing victims
to more frequently accept less efficient blocks. The attacks we develop present
evidence that this payout scheme is neither incentive compatible nor fair.

In our first attack, we show that by launching a Sybil attack against a pool
using PSM, a malicious miner can generate more revenue than an honest miner of
equivalent computational power. Additionally, we show that in an ecosystem of
PSM pools, the PSM payout scheme is not incentive compatible, and encourages
miners to spread computational resources between several pools to maximize
returns of their computational power investment. We find that an adversary can
trivially increase their profits by 10%, even if they just interact with a single
PSM pool, and can increase their profits by more than 30% when they apply
our strategy across multiple PSM pools. This means that miners are incentivized
to spread their computational resources across several PSM pools, making the
PSM mining scheme not incentive compatible between miner and pool operator.
Our second attack shows that miners can degrade the profitability of victim
miners by driving up the average amount of computational power a victim must
invest to receive a reward at a financial cost to themselves. We demonstrate



Not So Predictable Mining Pools 3

than an adversary can reduce the number of shares retained by a victim after
winning a block by up to 26%, reducing the victim’s mining efficiency. Lastly,
our third attack utilizes an altered variant of our original Sybil attack to degrade
competitor profitability while at the same time maintaining the adversary’s.

The rest of this paper is laid out as follows: Section 2 discusses the process
of mining cryptocurrencies, mining pools, and payout schemes across mining
pools; Section 3 examines the attacks we have constructed and lays out how they
work; Section 4 discusses the simulator we built and the data we collected to
test our various attacks; Section 5 examines our evaluation in carrying out our
attacks; Section 6 dives into existing attacks against mining pools and where
our contributions lie and the current state of integrity in the cryptocurrency
ecosystem; finally, Section 7 summarizes what we have discovered and presents
potential future work.

2 Background

2.1 Mining Cryptocurrencies

Cryptocurrency mining is the process of adding transaction records to to the
currency’s public ledger of past transactions. This ledger of past transactions
is called the blockchain, and serves as a means to tracking valid transactions
in the network. In order to add transaction records to the blockchain, miners
must compute a resource-intensive proof-of-work (PoW) that serves to provide
security guarantees against double-spending and ensure that transactions are
tamper-resistant. In exchange for computing the PoW, miners are rewarded with
a number of units of currency to compensate the miner [1].

In order to control the rate at which records are added to the blockchain,
cryptocurrency networks can adjust the what is considered a valid solution to
the PoW in an effort to require miners to spend more computational cycles to
find one. The network difficulty is a relative measure of how difficult it is to
find a new block, where the difficulty is adjusted periodically as a function of
how much hashing power has been deployed by the network of all miners for a
cryptocurrency.

2.2 Mining Pools

As a result of the large number of miners working on the most profitable cryp-
tocurrencies, new miners often face a high barrier to entry due to the variability
associated with successfully computing solutions to PoW. Miners with small
hashrates relative to the largest miners have a lesser probability of mining a
block, which causes the variance in its overall profitability to increase. Addition-
ally, as the mining difficulty of the network increases so too does the variability,
meaning that individual miners can expect to mine for long periods without any
reward.

To mitigate this variability in rewards, cryptocurrency miners can join a
mining pool which aggregates computing power (i.e. collective hashing power),



4 Holland, Connor, Diamond, Smith, and Schuchard

thus lessening the variability in finding blocks. Pools distribute the rewards of
successfully mined blocks to their member miners regardless of whether the
miner was the actual node to solve the PoW. This scheme allows smaller-scale
miners who would otherwise receive only sporadic rewards to instead receive a
steady, reliable income. In exchange, pool owners will collect a small fee from
each block found by the pool before distributing the remaining rewards to pool
participants.

Pools attempt to distribute rewards proportionally to each miner based on
their contribution to the pool’s overall hashrate. Therefore, pools need a secure
manner to estimate the computational power of each miner. To accomplish this,
miners occasionally submit shares, solutions to the PoW for the current block
that are at a lower difficulty than the network difficulty, to their pool. Miners find
shares in the process of hunting for a full solution to the PoW. The frequency and
difficulty of the shares submitted to the pool serves as a proxy for the miner’s
computational power. When a block is found, the pool uses a pre-determined
payout scheme that determines how to allocate the reward of the found block to
the miners in the pool based on submitted shares.

2.3 Mining Pool Payout Schemes

Various payout schemes have been used in mining pools, as explored by Rosen-
feld et. al. [17]. The pay-per-last-N shares (PPLNS) scheme and predictable solo
mining (PSM) are two examples of current mining pool payout schemes. PPLNS
is used in the largest Ethereum mining pool [4], Ethermine.org, and PSM is
used in another major Ethereum mining pool [6], Ethpool.org, as well as Bit-
coin, Litecoin, ZCash, DogecCoin, ZClassic, Komodo, and Hush solo mining
pools [16,2,19,9]. The two schemes work as follows:

– PPLNS Scheme: This reward system is round based, where one round is
an arbitrary number of minutes. When a block is found by the pool, the block
reward is distributed according to the number and difficulty of the shares
submitted by each during the last hour. Payout takes place immediately after
the minimum payout amount of 1 coin has been reached.

– PSM Scheme: In this scheme, each submitted share will increase the credits
of the miner who submitted the share by the share difficulty. The miner who
accumulates the most credits receives the reward of the next mined block
and their credits will be reset to their current credits minus the credits of
the runner-up miner. Re-setting the credits of the miner who did receive the
block reward to 0 was abandoned as it did penalize miners having an above
average hashrate. Typically, a miner will receive a full block reward as soon
as their accumulated credits equals the current block difficulty (+/- pool
luck) [6].

3 Attacking PSM Pools

In a PSM pool, the entire block reward is awarded to the miner with the most
shares any time the pool finds a block, and the winner’s shares are then de-

Ethermine.org
Ethpool.org


Not So Predictable Mining Pools 5

creased by the number of shares held by the miner with the second-most shares.
Therefore, the ”cost” of a block reward can be characterized by the number of
shares held by the second-place miner at the time the block is mined by the
pool. Likewise, the efficiency of a miner can be characterized by the number of
blocks won per share contributed.

The average cost of a block in a PSM pool is equal to the network difficulty [6].
However, because the mining process is random, the time between mined blocks
in the pool varies. As a result, the number of shares that miners have when a
block is found (and by extension, the cost for the block reward) also varies.

Fig. 1: The average cost per block is equal to the network difficulty (approx-
imately 2.3 × 1015 in Ethereum at the time of writing), but block costs are
distributed randomly.

3.1 Minimizing the Cost of Winning Blocks

A key observation to make about a PSM pool is that a miner can never pay
more shares for a block than the miner current has in their account. Miners who
naively submit all found shares to a single account in a single PSM pool can
expect to see block costs drawn from the population seen in Figure 1, resulting
in an average cost that is approximately equal to the network difficulty. However,
by refusing to place more shares into their account, a malicious miner will only
ever win the cheapest cheapest blocks produced by the pool. A miner who uses
this strategy can expect to pay less per block, on average, compared to a naive
miner with a comparable hash rate.

A miner who employs this strategy may have leftover computing power after
filling its account to the target number of shares. When the miner succeeds
at filling an account to the target number of shares, the miner in turn begins



6 Holland, Connor, Diamond, Smith, and Schuchard

crediting shares into a new account, filling it the target number. Our adversaries
goal is to always have an account at the target number, meaning that if a block
would be claimed for that value or lower, they will always win it, paying exactly
their targeted cost.

A natural risk of the cost minimization strategy is that blocks at or bellow
the adversary’s particular cost threshold will be insufficiently frequent. If our
adversary can fill accounts to the target number of shares faster than blocks at
that cost appear then some of those accounts will be wasted. In other words,
although a miner may decrease their average cost per block, they may win fewer
total blocks if any of their hashing ability goes unused. Since these shares do not
directly contribute to the adversaries revenue, the adversary has no motivation
to generate them; we term such shares withheld shares.

In order to counteract this loss of throughput the adversary can adopt one
of two strategies. First, the adversary can increase the cost it is willing to pay
for blocks, reducing its efficiency, but increase its throughput. Alternatively, the
adversary can spread computational power across multiple pools, attempting
to claim inexpensive blocks from several different pools. As long as the miner
can submit shares to alternate pools, it may use the cost minimization strategy
without a loss in throughput. In order to show that the cost-minimization strat-
egy is advantageous for miners in practice, we also demonstrate that realistic
miners can achieve a significant reduction in per-block cost without withholding
too many shares. In particular, for a miner with access to N mining pools, the
maximum acceptable proportion of wasted shares is 1 − 1

N .

The total profit of a miner for a given time period can be calculated as:

Profit =
(Shares earned)

(Share cost per block)
× (Block reward)

Assuming that a miner is never idle (that is, that there are sufficient alternate
pools where leftover computing power can be used to earn shares), then an
individual miner’s shares are roughly proportional to the miner’s hashing power
(barring the effects of luck), which is assumed to be constant. The block reward
is likewise assumed to be constant, as is the case in Ethereum. Therefore, a
miner who lowers their average cost per block for a fixed time period can expect
a greater total profit during that time.

Mining pools profit from the pool fees that are deducted for blocks mined
by the pool, so the pool is solely interested in miners contributing as much
hashing power as possible to the pool. If miners can obtain a greater payout
by contributing certain shares to alternate pools, then the PSM payout model
cannot be incentive-compatible. Furthermore, since the pool cannot expect to
find blocks at an average cost that is less than the network difficulty, a single
miner who wins blocks at an average cost that is less than the network difficulty
necessarily increases the average cost for the other miners in the pool.



Not So Predictable Mining Pools 7

3.2 Increasing a Miner’s Block Costs by Donating Shares

Malicious miners in PSM pools can abuse the lack of integrity on share submis-
sions in order to inflate a target miner’s average block cost. Consider the ”cost”
of each block as the number of shares that the second place miner has when a
block is found. An adversary can submit shares under another miner’s public
key to the corresponding pool, inflating that miner’s share count. Our adversary
can increase a victim’s costs by artificially closing the gap between the victim
and the miner in second place at the time that the victim wins a block. By
consistently minimizing the difference between the target miner and this runner
up we can effectively define the cost of the block for the target, and increase the
target miner’s average block cost. Since the malicious miner is donating shares
to other miners, this attack will cost the adversary money, while also reducing
the victim’s profitability.

3.3 Multiple Account Idling to Drive Up Target Miner Block Cost

The previous attack is intuitive and effective, but a malicious miner can do
almost as well in driving up the cost of a target miner without donating all
of their work to other miners. Furthermore, we can do this even the pool has
implemented integrity-checking measures. This attack involves having at least
two accounts in the same pool and spreading one’s submitted shares among those
accounts. Consider the ”cost” of a block being the number of shares the second
place miner has when a block is found. Increasing the average cost of a target
miner then involves minimizing this difference. By driving an attack account up
near the top of leaderboard of the pool and then ”idling” at a specific rank,
the attack account can wait until the target is in range to attempt to position
himself in second by a minimum number of shares in the case of a target miner
victory.

While idling the attack account, the adversary can offloads extra shares to
an offload account, slowly driving that account up the leaderboard. Once the
target passes the attacker, the malicious miner then uses all shares it finds to
constantly minimize the gap between itself and the target. By riding the target
miner up the few spots left in the leaderboard, the attacker is able to minimize
the gap between it and the target at the time of the target miner’s victory, and
thus define the cost of the block for the target.

Once the target miner has won, on a successful attack the attacker should
be at the top of the leaderboard at the start of the new block. The attacking
account now uses all of its hashing power to win the first block it can. After the
attacker wins a block he switches to the offloading account, making it the new
attacker account. Due to the offloading of shares while ”idling” the new attacking
account is in a much better position to get back to the ”idling” state where the
attack on the target can be launched. By spreading out across multiple accounts
(ultimately as many as needed) the attacker is able to almost constantly be in
an ”attacking” position given a higher hash rate than the target.



8 Holland, Connor, Diamond, Smith, and Schuchard

4 Experimental Setup

4.1 Simulation Methodology

To evaluate our attacks against the integrity of PSM pools, we have built a
generic discrete mining pool simulator, which is publicly available at [11]. We
use random probabilistic distributions to model both the rounds in which blocks
are found as well as the shares distributed to each miner based on their total
hash rate, the average difficulty, and the number of shares we wish each miner to
receive per second. Most documented configurations of real-world mining pools
can be configured in our simulator by manipulating the following parameters:

– Number of Honest Miners: the number of miners which model generic,
non-malicious miners that contribute all shares available per round to their
own total.

– Number of Malicious Miners: the number of miners which behave ma-
liciously in one of several considerations, depending on the chosen attack.
These miners are global adversaries and can see all members of the mining
pool, including each miner’s current shares, and have the ability to make
predictions about the next round’s accumulated shares for a given miner.
Malicious miners can freely distribute their valid shares to other miners or
completely separate pools in any manner they see fit. Finally, malicious min-
ers can make accurate guesses on when the next block will occur, and use
this information to make informed decisions about what to do with their
currently valid shares.

– Miner hash rates: the distribution of hash rates both the honest and
malicious miners should pull from, which come from both real-world PPNS
and PSM pools. The collection of this data will be discussed in the next
section, Section 4.2.

– Number of block rounds to simulate: the number of blocks our simulator
should simulate being found by the combined power of the miners in the
pool. Note, there is not necessarily a 1-to-1 mapping of simulated rounds
and rounds where blocks are found; in general, there can be thousands of
rounds for every block round.

– Round length: the round length in simulated seconds that each round
should last. This value informs the calculation of the block rounds and the
share distribution to each miner per round by influencing the difficulty to
find blocks.

– Shares per second: the number of shares per second on average that a
miner should find. We use this value when calculating share distribution per
round for each miner.

– Network difficulty: the total difficulty of finding a block for the given pool,
which is pulled from the real-world pool being simulated. If we are simulating
a PSM pool, we pull this from the Ethpool API; otherwise, if it is a PPLNS
pool, we pull this from the Ethermine API.



Not So Predictable Mining Pools 9

To represent realistic pools, we use known statistical distributions for mod-
eling both the rounds where blocks will be found and the distribution of shares
to miners per round. These distributions are calculated as follows:

– Finding Blocks: We model finding blocks using a geometric distribution
based on the configured round length, the total pool hash rate as given
by summing the hash rates of all honest and malicious miners in the pool,
and the average network difficulty of the Ethereum network measured as
the number of hashes required on average to find a block. We calculate the
probability of finding a block in a given round as:

P (finding block) =
round length× total pool hash rate

network difficulty
(1)

We then sample n samples from a geometric distribution of Bernoulli trials,
where n is the number of blocks we wish to find from the parameters above,
and the probability is calculated from Equation 1.

– Distributing Shares to Miners: We model the distribution of shares per
round to each miner with a binomial distribution based on the miner’s hash
rate, the desired shares per second, and the configured round length. We
first calculate the difficulty of getting shares by Equation 2.

D(shares) =

⌊
log2

miner hash rate

shares per second

⌋
(2)

Then, we get the actual probability of the miner finding a valid hash in one
second by Equation 3 using the difficulty we just computed.

P (finding hashes) =
miner hash rate

2difficulty
(3)

Next, we derive the shares the miner should find each round by sampling
from a binomial distribution based on n trials, where n is the round length
in seconds, and the probability computed in Equation 3 and multiplying it
by 2difficulty, where the difficulty comes from Equation 2.

This generic simulator gives us a way to simulate the interactions of honest
and malicious miners over any arbitrary number of blocks as well as various pool
types. In the next section, we discuss our method to collect data from existing,
real-world pools to use as our miner hash rates. In the sections following, we
discuss how we have used our simulator to find novel attacks on PSM pools that
are not incentive-compatible and can be or may already be actively exploited on
the largest Ethereum mining pools.

4.2 Collecting Real-World Miner Data

Our simulator uses hash rates and difficulties collected from the Ethpool and
Ethermine APIs, where Ethpool is a PSM mining pool and Ethermine is a



10 Holland, Connor, Diamond, Smith, and Schuchard

PPLNS mining pool. Using the miner addresses that Ethpool and Ethermine
use to pay miners, we were able to find miners that were paid by the mining
pools on the Ethereum block-chain via geth [8], the official Ethereum command-
line interface. The paid miners’ addresses were then queried against the Ethpool
and Ethermine APIs to locate active miners, their hash rates, and the difficulty
of the Ethereum network. At the time of writing, Ethpool has roughly 1,000
active miners, and Ethermine has approximately 40,000 active miners.

5 Evaluation

5.1 Cost Minimization Attack

32 simulations were run for pools of 100 miners for with hash rates drawn at
random from the real distribution of miners in Ethpool. In each case, the simu-
lation was allowed to run until the pool found 10000 blocks. In each run, a single
miner used the ”cost minimization” strategy by mining until reaching a fixed
target (75% of the expected block cost) and then stopping. The remainder of the
miners naively contributed every share found immediately. Miners whose hash
rates were so small as to never win a block for the duration of the simulation
are omitted. Results are shown in Figure 2.

Fig. 2: Average cost per block as a function of miner hash capacity, comparing
naive (blue) and malicious (red) miners.

Figure 2 shows that the PSM payout scheme already gives an advantage
to miners with lower hash rates. The average block cost for an honest miner



Not So Predictable Mining Pools 11

increases proportionally with the logarithm of the miner’s hash rate. But even
many lower-than-average miners can expect to decrease their average cost per
block with the cost minimization attack, compared to honest miners with the
same hash rate. Unlike normal PSM schemes where miners with higher hash
rates are less efficient, our malicious miner becomes more efficient as hash rate
grows. This is a result of the miner being able to more rapidly fill accounts to the
target share value, allowing the miner to take advantage of several inexpensive
blocks in short succession.

A second set of simulations was run to demonstrate that this attack is prac-
tical at a significant advantage for a typical miner without reducing throughput,
assuming access to only a small number of alternate pools. Each simulation from
this set used a fixed set of 100 miners with 1 malicious and the remainder honest.
The malicious miner’s hash rate for these simulations was fixed at the median
hash rate from Ethpool, to represent a typical miner. The malicious miner’s tar-
get block cost was varied across simulations to observe the relationship between
the average block cost and the proportion of shares not submitted to the pool.

Fig. 3: Average block cost as a function of shares not contributed to the pool for
a median Ethpool miner (1.3 GH/s) with network difficulty 2.3 × 1015. A naive
miner would have an average block cost equal to the network difficulty in PSM
pools.

Figure 3 shows that a typical miner can expect to reduce their average cost
per block from approximately 2.1×1015 hashes to 1.8×1015 hashes by withhold-
ing only 50% of its shares. Assuming the existence of only a single alternative



12 Holland, Connor, Diamond, Smith, and Schuchard

mining pool of comparable size, this malicious miner can achieve this reduction
without any wasted hashing power, by contributing the leftover hashing power
to the alternate pool.

5.2 Malicious Donation Attack

An antagonistic miner can inflate the cost of a victim miner by allocating shares
to miners immediately below the victim in shares when the victim is about to win
a block in the PSM pool. As the victim miner increases its shares, the malicious
miner can give its own shares to the runner-up miner in order to decrease the
difference in shares between the victim and the runner-up to 1. This ensures that
the victim almost always has no shares to put towards the next block. Under
this scenario, the attacker saves no shares for itself and gives shares to any miner
so long as it closes the gap between the victim – when the victim is about to
win a block – and the next miner.

Figure 4 shows that by using the above strategy, an attacker can consistently
force a victim to spend all shares available to win a block, or to put it differently
the gap between the victim and the second place miner is always a difference of 1
share. The amount of shares left over after winning a block generally follows an
exponential increase with respect to hash rate. The aforementioned figure shows
that the victim miner’s left-over shares decrease by roughly 26% in the presence
of this attack, given this distribution of 100 hash rates. Over time this decrease
in the amount of shares available for the next block will ultimately increase the
average block cost required for the victim to obtain a block. This assumes that
the malicious miner values punishing the victim more than making money, so
this study disregards the performance of the attacker under this scenario.

5.3 Idling Attack

A malicious miner can increase the average block cost of a target miner in PSM
mining pools even if the pool has integrity measures implemented, provided the
attacking miner has a sufficiently large hash rate in comparison with the target.
By situating multiple accounts strategically in the pool, the malicious miner can
be in second place almost every time the target miner is close to winning a block.
This in turn means that the adversary can ensure that the victim miner always
has their shares reset to zero after winning a block.

Table 1 shows that by using this attack a miner can cause the target to have a
smaller average number of leftover shares after winning a block. The data for this
table was gathered by running a control group of 100 miner’s for 10,000 blocks,
10 times. Afterwards, we ran the same group of 100 miners, taking control of
the miner with the highest hashrate in the pool, making it our attacker. Each
attack scenario was then ran 10 times for 10,000 blocks, and then averaged
out over the different runs. This results in raising the target miner’s average
block cost, and therefore reduces the miner’s profits. The only cost incurred
by the malicious miner is when the malicious miner accidentally exceeds the
victim’s shares essentially attack themselves. Our reported results are with a



Not So Predictable Mining Pools 13

Fig. 4: Average shares remaining after winning a block without (left) and with
(right) a scorched-earth attacker

Attacker / Target Ratio % Decrease in Average Winning Difference

1.2 .03

4.2 5.02

7.5 6.31

9.0 5.6

14.2 8.36

Table 1: The average decrease in a victim’s gap when it wins a block by a
computationally stronger adversary launching our “idling” attack.



14 Holland, Connor, Diamond, Smith, and Schuchard

hand optimized algorithm. We believe that with some machine optimization the
attacker could further drive up the target’s average block cost at a very small
overall cost to himself.

6 Related Work

Other attacks have been proposed against different mining pool payout schemes
which break incentive compatibility and fairness. Rosenfeld et. al.s’s work [17]
examines several payout schemes including Pay-Per-Share (PPS) and Pay-Per-
Last-N-Shares (PPLNS), exploring their vulnerability to pool-hopping attacks. In
a pool hopping attack an adversarial miner jumps between several pools hoping
to capitalize on instances where any one of those pools successfully mines a block
earlier than expected. This attack has a similar end goal to our cost minimizing
attack in Section 3.1, however our attack can achieve greater efficiency if multiple
pools exist to spread attacker resources across, it can still provide the adversary
gains even if only one pool exists.

Concurrent work recently published by Zamyatin et. al. [20] also examined
PSM pools 1. Several key differences exist between our work and Zamyatin et.
al.’s. First, our attacks utilize different properties than Zamyatin’s work. Our
cost-based attack described in Section 3.1 successfully wins blocks at a mini-
mum cost, rather than building up a large gap between the malicious miner
and the second-place miner. This allows our attacks to be more efficient than
Zamyatin’s in terms of average work performed per winning block by between
10% to 30%. Increasing other miner’s block costs via multiple idling accounts,
presented in Section 3.3, is a new attack not proposed by Zamyatin and does
not require donating shares to other miners not controlled by the adversary. As
a result, our idling attack, unlike their tactical donation attack, can not be triv-
ially defeated by adding authentication to the mining pool. Lastly, in Zamyatin.
et. al.’s work, the actual attack simulations were conducted with a mining pool
consisting of only two miners, a high hashrate and low hashrate miner. As de-
scribed in Section 4, our work evaluates attacks with realistic simulations based
on representative population of miners and hashrates taken the Ethpool API.
Our more accurate model better captures the dynamics of what an adversary
needs to accomplish to realize the attacks presented in our work.

Besides these related attacks, a wide body of literature on payout schemes ex-
ists. Many related papers, for example work by Lewenberg et. al. [14] and Schri-
jvers et. al. [18], examine cryptocurrency mining pools from a game-theoretic
perspective. These works often focus on theoretical constructions of mining pools
involving limited players. To our knowledge, no such game theoretic analysis has
been conducted specifically on PSM pools. Other studied attacks include denial-
of-service attacks [12,13] and withholding attacks [15,3,7], where malicious pools
attack rival pools and damage their reward by withholding valid blocks.

1 In Zamyatin’s work, these pools were called queue-based pools



Not So Predictable Mining Pools 15

7 Conclusions

In this paper we have presented three separate attacks against the predictable
solo mining scheme. The variability in the cost of the blocks in this scheme leave
it vulnerable to a malicious miner strategically gaining an advantage. First, we
showed that a miner that strategically spreads out its shares across multiple
accounts can generate more revenue than a naive miner with the same computa-
tional power by only claiming blocks below the average share cost. The second
attack presented shows that an adversary, not concerned with cost, can reduce
the shares a victim retains after winning a block, reducing their profitability.
Our third attack on the PSM scheme shows that even on pools with integrity
implemented, an adversary can reduce the number of shares a victim retains lim-
ited impact to his overall profitability. In conclusion, we recommend the PSM
scheme not be implemented in any new pools and any pools currently using the
scheme change to another, more incentive compatible and fair, payout scheme.

References

1. Bitcoin.it: Bitcoin Mining (2017)
2. Con Kolivas: Anonymous Solo Bitcoin Mining for Everyone (2017)
3. Courtois, N.T., Bahack, L.: On subversive miner strategies and block withholding

attack in bitcoin digital currency. arXiv.org (2014)
4. Ethermine.org: Ethermine (2017)
5. Etherscan.io: Ethereum Network HashRate Growth Rate (2017)
6. Ethpool.org: Credits on Ethpool (2017)
7. Eyal, Ittay: The Miner’s Dilemma. 2015 IEEE Symposium on Security and Privacy

(2015)
8. Go-ethereum: Geth (2017)
9. Hellcatz: Solo Mining Pool for ZCash, Hush, Komodo, Zclassic, and Zen (2017)

10. Hileman, G., Rauchs, M.: Global cryptocurrency benchmarking study. Cambridge
Centre for Alternative Finance (2017)

11. Holland, J., Connor, J., Diamond, P., Smith, J., Schuchard, M.: amin-
ingpoolsimulator - Mining Pool Simulator. https://github.com/VolSec/

aminingpoolsimulator (2017)
12. Johnson, B., Laszka, A., Grossklags, J., Vasek, M.: Game-theoretic analysis of

DDoS attacks against Bitcoin mining pools. Lecture Notes in Computer Science
pp. 72–86 (2014)

13. Laszka, A., Johnson, B., Grossklags, J.: When bitcoin mining pools run dry. In-
ternational Conference on Financial . . . (2015)

14. Lewenberg, Yoad, Bachrach, Yoram, Sompolinsky, Yonatan, Zohar, Aviv, Rosen-
schein, Jeffrey S: Bitcoin Mining Pools: A Cooperative Game Theoretic Analysis.
International Foundation for Autonomous Agents and Multiagent Systems (May
2015)

15. Luu, L., Saha, R., Parameshwaran, I.: On power splitting games in distributed com-
putation: The case of bitcoin pooled mining. 2015 IEEE 28th Computer Security
Foundations Symposium (2015)

16. NiceHash: NiceHash Solo Mining Pool for Multiple Currencies (2017)
17. Rosenfeld, M.: Analysis of Bitcoin Pooled Mining Reward Systems (Dec 2011)

https://github.com/VolSec/aminingpoolsimulator
https://github.com/VolSec/aminingpoolsimulator


16 Holland, Connor, Diamond, Smith, and Schuchard

18. Schrijvers, O., Bonneau, J., Boneh, D.: Incentive compatibility of bitcoin mining
pool reward functions. . . . Conference on Financial . . . (2016)

19. TBDice: Anonymous solo Litecoin and Dogecoin mining pool based on ckpool
(2017)

20. Zamyatin, A., Wolter, K., Werner, S., Mulligan, C.: Swimming with Fishes
and Sharks: Beneath the Surface of Queue-based Ethereum Mining Pools. sba-
research.org (September 20, 2017)


	Not So Predictable Mining Pools:  Attacking Solo Mining Pools by Bagging Blocks and Conning Competitors
	Introduction
	Background
	Mining Cryptocurrencies
	Mining Pools
	Mining Pool Payout Schemes

	Attacking PSM Pools
	Minimizing the Cost of Winning Blocks
	Increasing a Miner's Block Costs by Donating Shares
	Multiple Account Idling to Drive Up Target Miner Block Cost

	Experimental Setup
	Simulation Methodology
	Collecting Real-World Miner Data

	Evaluation
	Cost Minimization Attack
	Malicious Donation Attack
	Idling Attack

	Related Work
	Conclusions


