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Abstract. In electronic anonymity markets a taker seeks a specified
number of market makers in order to anonymize a transaction or activity.
This process requires both coalition formation, in order to create an
anonymity set among the taker and makers, and the derivation of the
fee that the taker pays each maker. The process has a novel property in
that the taker pays for anonymity but anonymity is created for both the
taker and the makers. Using the Shapley value for nontransferable utility
cooperative games, we characterize the formation of the anonymity set
and the fee for any arbitrary number of makers selected by the taker.
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1 Introduction and Literature Review

Several advances in information technology have brought about that electronic
transactions reveal identifying information of transaction partners. Specifically,
packet-switched networks transmit addresses in every data packet to ensure de-
livery, digital signatures include identifying public keys for verification, and pub-
lic ledger-based cryptocurrencies use references to — unique and therefore poten-
tially identifying — past transactions for verification.

Sometimes identifiability is dysfunctional, and demand for anonymity arises
out of private or public interest. However, establishing anonymity in systems that
depend on identifying information requires effort. Technical solutions, known as
mizes, bundle and shuffle the electronic records of similar activities (messages,
transactions) from many participants so as to hide the relation between subjects
and objects. Practical examples include the Tor network for Internet commu-
nication [11], mixes offering transaction anonymization in Bitcoin* [25], or the
existence of dark pools next to conventional financial markets [40].

Surprisingly little research studies the price of anonymity. Acquisti et al. [2]
describe the economics of participating in (message) mixing services. They ob-
serve that anonymity is co-created by multiple agents sharing activities with
the same observable features: one cannot be anonymous alone. More specifically,

4 The popular belief that Bitcoin payments are anonymous is wrong. This cryptocur-
rency uses pseudonymous accounts and a public transaction ledger. Agents who want
to hide the relation between their accounts, some of which may fully identify them,
need anonymizing technology [6].
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the authors consider decentralized anonymity infrastructures and suggest non-
cooperative game theory to identify viable participation equilibria, but they do
not offer a solution to their game. Acquisti and Varian [4] consider optional
anonymization with simple technology (“delete cookie”), available without cost
to some customers in their model, as a constraint to individual pricing. By
contrast, Friedman and Resnick [14] study the effect of optional anonymity on
the social level. Their repeated game with random matching predicts negative
welfare effects. This is because bad reputation does not stick when agents can
choose to be anonymous, resounding with the models of credit information shar-
ing, which also contribute to the formal economic treatment of identity [30, 29].

Other works, broadly related to anonymity and prices, focus on the pay-
ment system needed to compensate the operators of anonymizing infrastructure
without revealing identifying information on the payment channel [13, 5, 17]; or
empirically approximate users’ willingness to pay for anonymous Internet access
by measuring the tradeoff between the anonymity provided by a mixing service
and the experienced performance [19].

The present work is inspired by our measurement study of JoinMarket® [23],
a platform in the Bitcoin ecosystem that matches agents who seek to merge their
payments in a single transaction in order to improve anonymity. Such transac-
tions are called CoinJoins in jargon [21] and, to offer some anonymity, they must
entail payments of the same amount at the same time.® JoinMarket is organized
as platform where supply-side agents, called makers, offer funds to participate in
CoinJoin transactions for an advertised mixing fee.” Demand-side agents, called
takers, initiate an anonymizing transactions by choosing several of these offers.
As a result, a typical transaction from this market is funded by exactly one taker
and two or more makers. The matching and settlement is supported with soft-
ware provided by the JoinMarket developers and run in a decentralized manner
on many Internet nodes. Moser and Bohme [24] speculate why demand and sup-
ply might exist in this market, but acknowledge that “puzzles” remain. They do
not formally characterize the relation between key parameters, such as the level
of anonymity provided and its price (i.e., the fees paid to form the CoinJoin).

Here, to the best of our knowledge, we provide the first formal solution to
price anonymity in systems which require the coordination of multiple partic-
ipants. While we adopt the terminology of transaction anonymization used in
CoinJoins, our results generalize to all anonymization schemes with similar prop-
erties. As one cannot be anonymous alone, anonymity requires an agreement
among individuals to behave in an indistinguisable way; e.g. via common mes-
sage length or transaction amount. This results in the formation of an anonymity
set, being the collection of individuals that nonmembers cannot distinguish be-
tween. The degree of anonymity is generally associated with the size of the

® See http://joinmarket.io. Last visited on May 8th, 2017.

5 See Meiklejohn and Orlandi [22] on the hardness of untangling CoinJoin transactions.

" The fee is composed of fixed and variable parts to account for contributions to the
Bitcoin network’s miner fees. Our model abstracts from this complexity by assuming
a normalized nominal transaction value.
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anonymity set [32]. An anonymity set therefore requires coalition formation,
and the traditional game-theoretic approach to coalition formation is coopera-
tive game theory. Consequently, at its most basic level, a CoinJoin transaction
requires the formation of an anonymity set/coalition organized around a common
transaction amount. In addition, the formation of the anonymity set/coalitions
is enforceable because a Bitcon CoinJoin agreement occurs only if all members
of the anonymity set sign the transaction [21]. This is again consistent with
cooperative game theory.

In a cooperative game representation of a CoinJoin, a characteristic function
is specified for all potential coalitions in the transaction. For each coaltion, the
characteristice function is a vector of payoffs for each member of that coalition,
where payoffs are defined in terms of the size of the anonymity set specified
by the taker, each player’s valuation of their identity, the fee paid by a taker
to get enough makers to join the anonymity set, the fee received by makers
for joining the anonymity set, etc. What matters is that this approach cap-
tures the key property of anonymity markets, which is that some participants
pay for anonymity but all participants benefit from anonymity being created.
This is also novel from the perspective of cooperative game theory in that one
player (the taker) is paying other players (the makers) to form a coalition from
which all members benefit. Consequently, the characteristic function is defined
for the anonymity set (the grand coalition) and all potential subcoalitions of
the anonymity set, where the anonymity fee is an unknown to be determined
endogenously as a function of the solution concept used to solve the game.

In this paper we use the Shapley value to solve the cooperative game. The
Shapley value an economically-motivated solution that gives each player their
expected marginal contribution to the anonymity set and all possible subcoali-
tions of the anonymity set. In particular, we derive expressions for the Shapley
value of the market participant demanding anonymity (the taker) and any num-
ber of suppliers (the market makers) participating in a CoinJoin. This in turn
allows for a characterization of the price of anonymity. The class of anonymiza-
tion schemes to which our theory applies can be further expanded by adapting
the characteristic function to the anonymization scheme and attacker model.

Our work is distinct from a line of formal research on privacy quantifica-
tion with respect to attribute disclosure. For example, differential privacy offers
a framework to measure and account the privacy loss when querying private
databases interactively [12]. Game theory, also in its cooperative form [18, 9],
has been applied in this subfield in order to establish the price of attribute values
as a function of their precision, or to incentivize disclosure [15, 8]. Acquisti et al.
[3] survey the economics of privacy more broadly.

This paper is organized as follows. Section 2 specifies anonymity markets as
a cooperative game. Section 3 presents the Shapley value as the solution concept
for the game. Section 4 solves the game for the case of three players. Section 5
generalizes to N players, and Section 6 concludes.
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2 Anonymity Markets as Cooperative Games

In this section we introduce the building blocks for specifying an anonymity
market as a cooperative game. We consider anonymity markets with two types
of participants: takers and (market) makers [24]. Makers offer their identities or
pseudoidentities (such as Bitcoin addresses) for use in a transaction or activity
that the taker seeks to engage in anonymously. Recall from the introduction
that existing markets match exactly one taker with two or more makers to form
a transaction. All makers are assumed to be honest in that they do not seek
to ascertain the taker’s identity for their own purposes. Hence, the returns of
interest to a maker in an anonymity transaction are the fee that the maker
receives from the taker and the anonymity that the maker receives as well in
the transaction. This is the peculiarity of anonymity markets: the taker pays for
anonymity but the transaction itself anonymizes the identities of the taker and
makers alike. In this sense anonymity is akin to a public good that only the taker
pays for.8

Following Pfitzmann and Kéhntopp [32, p. 2], anonymity can be defined as:
“the state of being not identifiable within a set of subjects, the anonymity set.”®
The purpose of an anonymity market is to create an anonymity set, S, which is
a coalition consisting of a taker and makers. As anonymity is meant to preserve
identities, the term D will denote the taker’s value of its identity. All makers will
be assumed to value their identity identically, with d denoting a maker’s valua-
tion of its identity. The fee that a taker pays to each maker in an anonymity set
is denoted as f (to be determined endogenously). A cooperative game approach
to anonymity is appropriate because the focus is on the distribution of benefits
among the taker and makers when they form an anonymity set.

In a CoinJoin, the probability that a player remains anonymous (retains their
identity) against a global passive adversary (GPA) in an anonymity set/coalition
of size |S| is (|S| — 1)/|S], as all |S| members of the anonymity set are indis-
tinguishable to the GPA owing to the common transaction amount and use of
different input and output addresses in the transaction. In other words, the prob-
ability that the GPA randomly guesses the identity of a member of anonymity
set S is 1/]S|. Hence, participating in an anonymity market involves some risk
of of loss of identity to each maker, and the fee we derive that is paid by the
taker to each maker must compensate makers for this risk.'®

8 Public goods have the property that they are nonezclusive and nonrival [34]. Nonex-
clusive means that once created, the associated benefits of the good cannot be with-
held from others. Technically, the nonexcludability property of anonymity applies
only to the makers and taker engaged in the transaction. Nonrivalry means that use
of the good does not prohibit its use by others.

9 This definition is compatible with common alternatives. For example, the size of
the anonymity set corresponds to the parameter k in the k-anonymity model [39].
Entropy-based anonymity metrics generalize to sets with non-uniform priors [10, 35].

10 In addition to the first-order risk of losing one’s identity, makers may also face
the risk of legal authorities investigating Bitcoin purchases as part of a criminal
investigation. This potentiality lies beyond the scope of the present paper.
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In addition, it is assumed that anonymity is only created within coalitions
involving a taker. Intuitively, potential makers do not costlessly create anonymity
amongst themselves because they have no underlying transaction or message that
requires anonymization, and forming an anonymity set always carries some risk.
Instead, makers rely on a taker (who does have a transaction or message needing
anonymization) to compensate them for creating anonymity for both the taker
and themselves. This implies that the payoffs for makers in coalitions that do
not involve a taker are normalized to zero. Normalizing in this way facilitates an
emphasis on taker identity, maker identity and the public nature of anonymity
in determining the fee for anonymity, which is the focus of the paper.

The specifics of the transaction to be anonymized (e.g., amount, message
length, or time) precludes takers from matching with other takers. As Narayanan
et al. [27] observe, a one-taker transaction avoids the necessity for multiple takers
to agree on transaction specifics, which is inefficient and costly. Hence, there is no
requirement for coincidence of transaction specifics among takers. Only makers
customize the transaction to the specific needs of a taker so as to make their
activities indistinguishable in the anonymity set. The incentive for makers to
form a coalition with the taker is that they are compensated for facilitating
anonymity by meeting the taker’s transaction needs. This compensation takes
the form of a fee, f, paid by the taker and the anonymity received by the maker
when participating in the CoinJoin.

The taker’s alternative is known as a miz, and is addressed within the model
as the taker’s outside option. Specifically, instead of an anonymity market, such
as JoinMarket, a taker could go to an outside option (e. g., a mix) and pay a fee,
F, for anonymity. Anonymity markets are almost instantaneous transactions for
the taker whereas the outside option may involve a significant delay and risk.
Mixing services in the Bitcoin ecosystem reportedly stole their clients’ funds, a
threat that can be mitigated with CoinJoin transactions arranged on anonymity
markets [25]. Consequently, the reservation value of anonymity for the taker of
going to the outside option for anonymity is D where § € (0, 1) is a function of
both the probability that the funds are transmitted as intended while anonymity
is preserved by this outside option, and the taker’s time preference (discount
factor). As both probabilities and discount factors lie within the (0,1) interval,
0 € (0,1) by definition. By comparison, in a CoinJoin with an anonymity set of
size |S| the taker retains its anonymity with probability (|S| —1)/|S], leading to
an expected value of anonymity of (|S| — 1)/|S| x D. Lastly, the mixing fee, F,
is posted, whereas the CoionJoin fee, f, is to be determined via the equilibrium
process associated with the CoinJoin.

Finally, anonymity is a public good but it need not be valued identically
among the anonymity market participants; hence, the value D for the taker’s
identity and d for each maker’s identity. Moreover, interpersonal comparisons
of anonymity are not possible. For example, the taker’s value of its identity
need not be expressed in terms of the same measure of value as the maker’s.
Another rationale for nontransferable utility is that it is likely that takers and
makers have differing time preferences [24]. Even if the valuation of anonymity
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was comparable between players, practical anonymity markets are restricted in
arranging transfer payments. For example with Bitcoin and JoinMarket, trans-
fer payments are either not enforceable (because alternative payments cannot
be part of the same atomic transaction), or compromise the anonymity of the
transaction (because the GPA may infer identity information from observing the
transfer payments). In this model the transfer payment is the fee for anonymity,
which is the same for every maker. Enforceable sidepayments beyond this con-
stant fee would potentially compromise anonymity.

This implies that what is attainable by an anonymity set associated with
a coalition of taker and makers cannot be assigned a single real number, as
is the case in cooperative games with transferable utility, known as TU games
[33]. More-to-the point, the assumption of transferable utility would imply that
identity can be expressed in the same units of measurement for every member
of the anonymity set and that it is possible to distribute the value that each
member places on their identity across the membership of the anonymity set in
a meaningful way. We do not believe that identity has such properties. Follow-
ing Shapley [37, 38], “Interpersonal comparability of utility is generally regarded
as an unsound basis on which to erect theories of multipersonal behavior.” For
this reason, much of noncooperative game theory steers clear of the transferable
utility assumption. For similar reasons we use cooperative games with nontrans-
ferable utility, known as NT'U games. NTU games are a more generalized version
of cooperative games, as transferable utility is a restrictive assumption. Indeed,
any TU game can be expressed as an NTU game. We therefore turn to the formal
definition of an NTU game and the Shapley value solution to NTU games.

3 NTU Games and the Shapley Value

In a NTU game, for any non-empty coalition, S, the associated NTU charac-
teristic function, V(S), denotes the set of feasible utility vectors attainable by
that coalition. Specifically, V(S) C RIS, where |S]| is the cardinality of S. For
each vector & € V(S) the entry x; specifies the maximum payoff to player i
should player i be a member of that coalition.!! Characteristic function V(.9) is
the vector of utilities that is feasible for the members of S when they cooperate
with each other. As described, an anonymity market is a cooperative game with
sidepayments but without transferable utility [31].

An NTU game is defined by a pair (N, V), where N is the set of all players,
and V(S) is the characteristic function specifying the payoff to each member
i € S for all coalitions S C N. Given the game (N,V) our approach uses the
Shapley value [36] to derive the anonymity fee, f. The Shapley value allocates
the total net benefits of an anonymity transaction according to each player’s
marginal contribution to every subcoalition of the anonymity set that the player
can potentially be a member of.

11 Technically, any y; < x; is a potential payoff for player ¢ as well. This property is
known as “comprehensiveness” [28].
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The Shapley value was originally defined for TU cooperative games. Later,
Shapley [37, 38] established that one can create a TU game associated with
an NTU game by creating a fictitious transfer game (a A-transfer game), which
converts the NTU game into a TU game that can be solved via Shapley’s original
method. The steps associated with this procedure can be summarized as follows.
First, begin with a nonnegative set of weights for each of the players, A =
(A1, A2,..., A|n)). Given these weights, find the maximum sum of the A-weighted
utility for each vector & € V(.S). Second, these maximal sums essentially define a
TU game (the fictitious transfer game) for which a Shapley value can be derived.
Solve for the Shapley value. Denote as @;(w, A) the allocation received by player
i in the Shapley value, where w(.9) is the characteristic function for the fictitious
transfer game. Third, verify that the vector [p;(w,A)/A];c y is feasible for the
grand coalition in the NTU game; i. e., [p;(w, A)/Ai];c 5 € V(). If feasible, then
wi(w, X)/A; is the Shapley value allocation for player ¢ in the NTU game.

Given this synopsis we now specify the formal procedure. First, create a
fictitious transfer game by specifying a vector A € (R‘*)‘NI, For each coalition,
S, the function w(S) is called the worth function (the characteristic function of
the fictitious transfer game), where

w(S) = max Z)\m (1)

The A;/A; ratios can be considered as exchange rates between the nontransfer-
able utilities of the players. As a simple example, if a taker measures its identity
in terms of US$ and makers in terms of euros, €, then an exchange rate, Ae /s,
is needed to relate D to d, and \g/)e is needed to relate d to D.12

Second, the worth functions, w(.S), can be regarded as characteristic functions
for a TU game derived from the NTU game. The Shapley value for the associated
TU game is

ooy = Y D0 sy —wsy . @
€S,

SCN

For any coalition, S, that ¢ is a member of, the term w(S) — w(S \ {i}) in
Equation (2) measures i’s marginal contribution to coalition S. That is, the dif-
ference w(S)—w(S\{i}) is what the coalition can achieve with ¢ as a member less
what it achieves without ¢. The Shapley value is therefore the expected value of
a player’s marginal contribution over all potential |N|! orderings of the players
in the game. The coefficient on the marginal contribution of ¢ in Equation (2) is
the probability that a particular coalition with ¢ as a member occurs, assuming

12 Myerson [26, p. 16] offers an alternative interpretation: “With nontransferable utility,
we have no grounds for interpersonal comparison of utility, so we may feel free to
rescale either player’s utility separately by a positive scaling factor or utility weight
Ai. Now, in the rescaled version of the game, pretend that the weighted-utility payoffs
are transferable.”
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that all |N|! orderings are equally likely. In this way, the Shapley value allocates
each player their marginal contribution averaged over all possible orderings (per-
mutations) of the players. For any TU game the Shapley value exists and has the
following properties, among other characteristics [36]: (i) uniqueness, (ii) sym-
metry: any two players that are treated identically by characteristic function
w(+) have equal Shapley value allocations, and (iii) (Pareto) efficiency, the gains
of the grand coalition must be fully distributed:

Z @i = w(N). (3)
iEN
These properties make the Shapley value the predominant solution concept for
cooperative games. As a reminder, the Shapley value is also individually rational.
Third, [pi(w, X)/Ai];cn is the Shapley value (A-transfer value) for the NTU
game if it is feasible for the grand coalition in the NTU game. This is the
case when [p;(w,A)/Ai];cy € V(N). If it is not feasible, then the procedure
must be redone for another vector A’ # X until a solution is found. Shapley
[37, 38] establishes that such a solution exists.'® Most importantly, in establishing
feasibility we endogenously derive the fee, f, paid by the taker to each maker in
the anonymity set. An example is given in the following section.

4 A Three-Player Anonymity Market

In a 3-player anonymity market the taker specifies that it desires two makers in
the associated anonymity set. Let player ¢ be the taker and players 1 and 2 be
the makers. For single-player coalitions the NTU characteristic functions, which
specify the vector of maximum utilities achievable by each member of a coalition
when that coalition is formed, are

V({t}) ={a: |2 <D - F}, (4)
this reflects the outside option for the taker (the mix); and
V({{i}) ={x; | v; <0:i=1,2} for makers 1 and 2. (5)

Makers require a taker for an anonymity market to form. Without a taker, a
maker’s utility is normalized to zero.

For 2-player coalitions, in a coalition of {¢,1} or {¢,2} each player remains
anonymous with probability 1/2. It is the existence of these intermediate coali-
tions that separates this analysis from 3-player bargaining. Consequently,

V{t,1}) = {(z, 21) | @ < V2D = fron < Vod + [} (6)
V{t,2}) = {(zi, 22) | w0 < V2D — f,wp < V2d + [} (7)

13 As the proof is based on a fixed point theorem it does not guarantee uniqueness.
We are unaware of any example in the literature where multiple weights are derived
that lead to alternative NTU Shapley values. If multiple fixed points exist, selecting
among them is a well-defined problem. A natural criterion would be to maximize
the taker’s payoff.
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Notice how (i) anonymity is akin to a public good that is (probabilistically)
produced when an anonymity set/coalition is formed, and (ii) only the taker
is paying for anonymity. Consequently, no anonymity is produced in a {1,2}
maker-only coalition because neither maker pays the other to create anonymity.
To wit, makers are direct suppliers of anonymity to the taker. As a byproduct
makers supply anonymity to each other. Makers do not contract directly for
anonymity amongst themselves:

V({1,2}) = {(21,22) | 21 < 0,22 <0}. (8)

Finally, the probability of retaining one’s identity is increased to 2/3 in the grand
coalition, N = {¢,1,2}:

V(N) = {(zr,a1,29) | 0 <D —2f,a1 < 2fsd+ frwe < 2fsd+f ). (9)

Note that in all of these specifications, the anonymity fee in the NTU game is
not taken as given, but is an unknown to be solved for.

Following the procedure outlined above, the solution is derived by following
these three steps. First, set A = (A, A\, A2) = (1,1,1).1* Second, create the
worth functions that are consistent with this A and solve for the Shapley value
of the TU game. Third, demonstrate feasibility of the NTU solution for this A.

The associated worth functions, which can be regarded as characteristic func-
tions for the TU game derived from the NTU game, are constructed via Equa-
tion (1). Therefore the worth functions are

w({t}) = 6D — F; (10) w({t,2}) = VoD +1/2d;  (13)
w({1}) = w({2}) = 0; (11) w({1,2}) = 0; (14)
w({t,1}) = 12D + 1/2d;  (12) W(N) =2/3D +4/sd.  (15)

Once the worth functions have been derived, the result is a TU game. The
Shapley value is calculated according to the formula in Equation (2). The Shapley
values for this TU game are (derivation in Appendix A),

14 22 1
= "D+ =2d+ (6D - F); 1
or(w, A) 26 + 36d—|— 3(5 ); and (16)
5 13 1
901(00,)\)*902(%)\)*%DJF%d*g(CSD*F)- (17)
To establish the NTU Shapley values, feasibility requires:
(Pe(w, A)/Ar, @1(w, A) /A1, pa(w, A)/A2) € VI(N). (18)

Recall that (A¢, A1, A2) = (1,1,1); hence, feasibility for the taker requires that
gu(w,A) < 23D —2f; i.e,
14 22 1 2
—D+ —d+ -(0D—-F) < =D —2f. 19
36 * 36 + 3( )< 3 / (19)
Solving for f yields the following result.
1 This is consistent with finding a solution under the condition A\t = A1 = A2 (where
all X’s are finite), which yields an equivalent result.
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Result 1 The fee associated with Shapley value of a 3-player (one taker, two
makers) anonymity set is

) 11

f=—D

1
=D = z2d— (6D~ F). (20)

Proof. What remains is to show that the solution is feasible for the makers. Given
the definition of V(N), feasibility also requires that ¢ (w,A) < 2/3d + f and
w2(w, A) < 2/3d+ f. Substituting in the value for f in Equation (20), 2/3d+ f =
2D+ 3d— (6D — F), which according to Equation (17) is the solution for
both ¢ (w, A) and ¢a(w, A).

This result establishes that the Shapley value can be used to characterize the
fees for anonymity as a function of the taker’s subjective identity valuation (D),
the makers’ subjective identity valuation (d) and the outside alternative (§ and
F). Several novel observations emerge from this result. First, it cannot be the
case that anonymity /identity is symmetrically valued across takers and makers
(D = d) because then f < 0.1 This would require makers to pay the taker. As
such an arrangement is never observed, it must be the case that D > d. Second,
the maker fee, f, is increasing in the outside fee, F', but only by a factor of
one-sixth. Third, one can re-write the fee in (20) as

5—60 11 1
f= 36 D 36d+6F’ (21)
in which case it is clear that non-fee based characteristics of the outside option,
captured by §, contribute significantly to determining the fee in a one taker, two
maker market. Recall that ¢ is a function of both the taker’s time preferences
and the size of the anonymity set generated by the outside option (mix). In
particular, Moser and Béhme [24] posit that takers’ time preference cause takers
to pay a premium for immediate anonymity services. Such a low discount factor
implies a low value of §, perhaps approaching zero.

5 The Price of Anonymity

Now we derive the anonymity fee for an arbitrary number of makers, m. As
the makers are assumed to be identical, what matters in expressing the NTU
characteristic function for a coalition is the number of makers involved. Let:

— m be the total number of makers that the taker seeks in the anonymity set;
— n=1,2,...,m be the number of makers in a coalition;

— {t,n} is a coalition with the taker, ¢, and n makers;

— {t} is a coalition where the taker instead uses the outside option (mix);

— {n} is a coalition with n makers and no taker.

15 The term 6D — F must be nonnegative; otherwise, the outside alternative is not
viable for the taker.
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Then the NTU characteristic functions for the game are

V{t}) ={z¢ |z, < 6D - F}; (22)
VHAn}) ={(z;) |2 <0Vi:1<i<n}; (23)

V({t,n})z{(wt,( ))|xt<?D—nf,xl§Td+f Vi : 1<z<n}
(24)

The worth functions for a coaltition, S, in the A-transfer game are derived
by setting A\; =1 for all ¢ € S and applying Equation (1):

w({t}) =0D — F; (25)
w{n})=0Vn:1<n<m; (26)
w({tin}) = = 1D + n”+ -d. (27)

Theorem 2. The Shapley values for an anonymity set with one taker, t, and
m makers are

oi(w,A) 6D — F D & i
= 2
At m—+1 m+1 z:: 1;n+1 (28)
%‘(M)\) i " n? +n—-1 éD—F
i — m—|—1 )= n+l m-(m+1)’
(29)

for all makers i € {1,...,m}.

See Appendix B for the proof. An alternative representation using harmonic
numbers instead of finite sums is given in Appendix C.

The associated anonymity fee is derived from the requirement that ¢;/\
must be feasible for V({t,m}); i.e., pt/A¢ < 25D — mf. From Equation (28)
and given A\; = 1, this becomes

pr O0D—F D & n d <~ n? m
Lo < D—mf. (30
At +m+1;n+l+m+1;n+ mf. (30)

m—+1 1~ m+1

Setting the two sides of the inequality equal to each other and solving for f
yields the following characterization.

Corollary 1. The fee associated with the Shapley value for an anonymity set
with m > 1 makers is

D D S n d N n? §D—F
f_m—i—l_m~(m+l);n+1_m-(m+l);n+l_m-(m—i—l)'
(31)

Once again, the anonymity fee, f, is increasing in the outside fee, F'. Yet the
increase in f due to F' is decreasing in the number of makers, m. Specifically,
f is increasing in F by a factor of 1/(m(m + 1)). The anonymity fee is also
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increasing in the taker identity, D, and decreasing in the makers’ identity, d. In
particular, the pricing of anonymity has remained a puzzle because the produc-
tion of anonymity generates a positive externality in that all agents who supply
anonymity also receive it as a good [24]. We provide the first characterization of
the relation between f and d.

Regarding computational aspects, observe that the calculation of the Shapley
value and its associated fee requires linear time in m at fixed precision, and
polynomial time at arbitrary precision. Hence, our solution offers an efficient
algorithm to determine the price of anonymity.

6 Conclusion

We have specified a cooperative game that captures the features of anonymity
markets known as CoinJoins. More generally, our model captures the fact that
in anonymity markets it is often the case that one demand-side participant
(“taker”) pays for anonymity, but all participants of a trade, including m > 1
“makers” on the supply side, receive anonymity if the trade happens. This is
novel from a game-theoretic perspective as well because one member of a coali-
tion is paying a fee to all other members to form the coalition even though
all members utlimately benefit from the resulting coalition. Using the Shapley
value as solution concept, we have derived the price of anonymity endogenously
as a function of the taker’s and makers’ valuation of their identities, as well as
the price and quality of an outside option for the taker. Of particular note is
that we are able to characterize the way in which the associated positive ex-
ternality received by makers (anonymity) affects the fee paid by the taker. The
model is general enough to inform the design of all anonymity schemes that
create anonymity by coordinating observable activities in order to make them
look alike. These include anonymous communication systems and their appli-
cations in electronic voting and privacy-enhancing middleware, cryptocurrency
transaction systems, and possibly the organization of dark pools in finance.
The model establishes a broad canvas for follow-up work. An immediate
example is that alternative cooperative solution concepts exist for NTU games;
most notably, the core, and the NTU values introduced by Harsanyi [16] and
Maschler-Owen [20]. The Shapley value is utilitarian in that it maximizes the
weighted sum of the individual payoffs in each coalition. This is only the case
for the grand coalition in the Harsanyi value. Instead, the Harsanyi value is
equitable in that weighted net utility gains are equal for each individual in a
coalition. By investigating these alternative solutions one may gather whether
CoinJoins may be able to compete on different coalitional ethics. Our results
can also be experimentally tested via behavioral techniques in which subjects (a
taker and makers) are endowed with values for their respective identities. One
could then see how fees vary with alternative magnitues of indentity values and
also the amount of anonymity provided. In addition, the question of whether the
fee varies with the external fee for anonymity mixes can be investigated both
experimentally and via comparisons of the prices in CoinJoins and mixes.
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In its present form, the game is one-shot. It does not capture the reported
practice of repeated anonymization [25], which could increase anonymity as the
cardinality of the joint anonymity set grows. Hence, a direction for future work is
to consider alternative payoff functions than the global passive adversary (GPA)
used here, who guesses exactly once with uniform probability. For example, a
straightforward extension is to model varying risk appetite of takers by adjusting
the NTU characteristic function. The problem gets substantially more compli-
cated if non-identical and potentially adversarial makers are considered. Mdoser
and Bohme [24] speculate that attackers could try to actively participate in Coin-
Join transactions, possibly with multiple identities, in order to extract informa-
tion about the composition of the anonymity set and eventually de-anonymize
the taker. Such attackers could offer their enticing services at subsidized fees,
below the Shapley value, in order to increase their odds of being selected. This
scenario clearly requires an analysis based on characteristic functions that are
derived from an underlying noncooperative game. The same applies to situa-
tions where takers choose m out of a large number of competing makers. Let us
emphasize again that, although we give solutions for arbitrary m, the present
theory does not lend itself to interpretations where m is endogenous.

Other directions of potential interest are to consider (opportunity) costs of
engaging in anonymous transactions; to endogenize the quality of the outside
option, §, by modeling the behavior of the mix operator under incentive regimes
as suggested by Bonneau et al. [7]; to consider transactions with coins of different
quality as proposed by Abramova et al. [1]; to relax the strict dichotomy between
taker and makers and replace it with heterogenous agents in some preference
space. Finally, the mechanism design required to elicit the fair price of anonymity
derived here is up to future work. JoinMarket, the platform that inspired this line
of research, seems to employ ad-hoc mechanisms, as witnessed by many changes
in the course of its history. And there seems to be room for improvement on the
mechanism as well as need for a more principled approach towards constructing
anonymity markets.
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APPENDIX

A Shapley Value Derivation for the 3-Player Example

Following the formula given in Equation (2), the Shapley value for the taker, ¢,
with the makers as players 1 and 2, is

o (w, X) :% (w(N) —w({1,2})) + (grand coalition)
%(w({t, 1) — w({1})) + (taker & maker 1)
é(w({t, 2}) — w({2}) + (taker & maker 2)
2 ({t) — w(®)). (taker alone)  (32)

Substituting in the worth function values, Egs. (10)—(15),
(by convention, w(f)) = 0):

1/2 4 1/1 1 1/1 1 1
=-(=D+ - —(=D+ = —(=D+ = ~(6D—-F).
ot (w, A) 3<3 +3d>+6<2 +2d>+6(2 +2d)+3(6 )
(33)

Aggregating terms,

2 1 1 4 1 1 1
got(w,)\)(9+12+12)D+<9+12+12>d+3(5DF) (34)
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and simplifying:
14

22 1
= gD+ ged+ 5 (6D~ F). (35)

Using Equation (2) to calculate the Shapley value for player 1, who is a maker:

©01(w, A) :é (w(N) —w({t,2})) + (grand coalition)
%(w({t, 1) — w({t) + (taker & maker 1)
(2 ~wi2) + (both makers)
%(w({l}) —w(0)). (maker 1 alone) (36)

Substituting in the worth function values:

1 /2 4 1 1 1/1 1

Aggregating terms and simplifying:

2 1 1 4 1 1 1
5 13 1
= 35D+ 3d— (0D F). (39)

By the symmetry property of the Shapley value, @a(w,A) = p1(w,A). O

B Proof of Theorem 2

The proof consists of three parts.

B.1 Shapley value for the taker

Proof. From Equation (2), the coefficient on w({t}) — w(d) = 6D — F in the
Shapley value is 1/N = 1/(m + 1). This is the first term in Equation (28).

Given m makers, there are (’Z:) = #‘_n), combinations of coalitions that
can be expressed as S = {t,n}. Note also that N = m + 1. From Equation (2),
the coeflicient on each coalition {¢,n} in the Shapley value is

(IS| = DYV —|Spt _ (n+1) =) ((m+1)—(n+1))!  nl(m-—n)!

N! (m+1)!  (m+1)m!’
(40)

For each coalition, {¢,n}, the marginal contribution for the taker in the formula
for ¢y is (w({t,n}) — w({n})) = w({t,n}). In aggregate, the partial sum in
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the Shapley value for a specific n is the product of the following three terms:
(i) the number of {t,n} coalitions, (ii) the Shapley coefficient that is common
to each {t,n} coalition, (40), and (iii) (w({t,n}) — w({n})) = w({t,n}), from

Equation (27):
n n?
( D+ d> . (41)

! ! —n)! 1
m n!(m —n) « w({t,n} =
n+1 n—+1

n!(m—n)!x(m+1)m! m+1

Summing this over all possible n = 1,...,m yields the final two terms in Equa-
tion (28). This completes the derivation of the Shapley value for the taker, ¢; /A,
given that \; = 1.

B.2 Shapley value for the makers

In deriving the Shapley value for maker ¢, ¢;, note that for any coalition, S’,
where t & S ,w(S‘ ) = 0. This simplifies the remaining steps for calculating the
Shapley value for i to only those worth functions whose coalitions include a
taker, t, as a member; i.e., w({t,n}).

Proof. For any maker, ¢, there is one and only one {¢, i} coalition. The coefficient
on this coalition in the Shapley value is

- ((m+1)-2)!  (m-1) 1

(m+1)! (m+1)! m-(m+1)

(42)

Asw({t,i}) =1/2D+1/2d and w({t,i}\{i}) = §D—F, the part of the calculation
of ; that corresponds to the marginal contribution of i to {¢,4} is:

1 , AN g 1 1 1
oy (D s\ @) = s (504 5a- 6D - 7).
(43)
From Equation (2) the calculation of the Shapley value is now:
1 1 1
30 BV g — ettt (D). (9
ie{{tm}In>2},

{tm}CN

The remainder of the coalitions where i € {¢,n} require n > 2. For a given n,
the number of coalitions for which maker i is a member, i € {¢,n}, is

m—1\ (m—1)! B (m—1)!
(n—l) =D ((m-1)—(n-1) (n=1)(m—mn) (45)




Pricing Anonymity 19

Given n, the coefficient in the Shapley value for the marginal contribution,

w({t,n}) —w({t,n} \ {i}), of maker i is

(n+1) =) ((m+1) = (n+1))! _nl(m—n)!
(m+1)!  (m1) (46)

To calculate w({t,n}) —w({t,n} \ {i}), use Equation (27) and observe that

~1 —1)?
w({t, )\ {i) =w(ftn—1} = =D+ (n - a (47)
Consequently, i’s marginal contribution to the coalition {¢,n} is
) 1 n?+4+n—1
w({t,n}) —w{t,n}\{i}) = D+ d. (48)

n-(n+1) n-(n+1)

Hence, when n > 2, for a given value of n the partial sum within the Shapley
value corresponding to {¢,n} such that ¢ € {¢,n} is the product:

—1)! '(m —n)! 2 —
(m—1) L (m—n) " 1 D4 +n 1d
(n—1!(m—n)! (m+1)! n-(n+1) n-(n+1)
Equation (45) Equation (46) Equation (48)
1 1 n?+n—1
= D d). 49
m~(m—|—1)x<n—|—1 N n+1 ) (49)
Summing this over all possible n = 2,...,m yields:
D - T n?4n—1
. 50
m-(m+1) zz:n—i-l m—l—lz; n+1 (50)

To derive ;, combine this with the Shapley value term for {¢,}, Equation (43):

1 1 1
©i o gy (2D+2d (0D ))—i—
D LR | d “n24n—1
. 1
m~(m+1);n+1+m~(m+1); ntl (51)

Aggregating terms:

D m
vie m-(m+1) gn—i—l (m+1

This completes the derivation of the Shapley value for a maker, ;/A;, given
A= 1.



20 Daniel G. Arce and Rainer Bohme

B.3 Feasibility check

The final step requires verification that ¢;/); is feasible for V' (V). This is facil-
itated using the expressions of ¢;/\; and ;/A; in terms of harmonic numbers,
as given in Equations (56) and (57) in Appendix C.

Proof. Recall that the fee, f, given in Equation (31) was derived from the fea-
sibility condition for ¢;/A; when A\, = 1: ¢ < gD — mf, yielding f =
1

m—HD - %g@t. The feasibility condition for ¢;/\; when A\; =1 is

m 1 1

m
i < ———d =——d+——D — —;. 53
SD_m—f—l +/ m—+1 +m—|—1 m% (53)

Setting the two sides equal and substituting in the value for ¢;, Equation (56):
o m-d n D
L S |
1 <5D—F+D(m_Hm+1 +1)> +

m m+1
1 (d(Hpir+ (B —1) (m+1))
m< hs m2+1 >7 (54)

which reduces to

D(Hm+1—1)+d<@—ﬂm+l+1)—5D+F
m-(m+1)

Y = (55)

This is exactly the right side of Equation (57). Hence the condition holds under
the theorem.

C Alternative Form of Theorem 2 Using Harmonic
Numbers

Let H,, denote the m-th harmonic number, i.e., H,, = Y. 1. Using this

n=1n
shorthand, Equation (28) of Theorem 2 can be rewritten as,

oi(w,A) §D—F—|—D-(m—Hm+1+1)+d-(HmH—i—(%—l)(m—l—l))'

>\t m + ].
(56)
and Equation (29) becomes:
oiwn) D (oo~ td- (m5m 1) 5D+ F -

/\i m(m+1)



