
Faster Unbalanced Private Set Intersection

Amanda C. Davi Resende and Diego F. Aranha

Institute of Computing – University of Campinas (UNICAMP)
{amanda.resende,dfaranha}@ic.unicamp.br

Abstract. Protocols for Private Set Intersection (PSI) are important
cryptographic primitives that perform joint operations on datasets in a
privacy-preserving way. They allow two parties to compute the intersec-
tion of their private sets without revealing any additional information
beyond the intersection itself. PSI implementations in the literature do
not usually employ the best possible cryptographic implementation tech-
niques. This results in protocols presenting computational and commu-
nication complexities that are prohibitive, particularly in the case when
one of the protocol’s participant is a low-powered device and there are
bandwidth restrictions. This paper builds on modern cryptographic en-
gineering techniques and proposes optimizations for a promising one-way
PSI protocol based on public-key cryptography. For the case when one of
the parties holds a set much smaller than the other (a realistic assump-
tion in many scenarios) we show that our improvements and optimiza-
tions yield a protocol that outperforms the communication complexity
and the run time of previous proposals by up to one thousand times.

Keywords: Cuckoo filter, Private Set Intersection, unbalanced PSI, soft-
ware implementation.

1 Introduction

Private Set Intersection (PSI) is a special case of secure multiparty computation
(MPC) where two parties perform joint operations on datasets while preserv-
ing privacy. They have been used in several applications such as genetic testing
of fully-sequenced human genomes [4], private contact discovery [7], relation-
ship path discovery in social networks [28], botnet detection [29] and proximity
testing [32].

PSI protocols allow two parties storing a set of private data such as lists of
patients, criminal suspects or telephone contacts to compute the intersection of
their sets without revealing any additional information beyond the intersection
to one or both parties. These protocols can be divided into one-way PSI, i.e., only
one of the parties learns the intersection; or mutual PSI (mPSI), in which both
parties learn the intersection. The focus of this work is one-way PSI protocols.
For more information about mPSI, the reader is invited to check [6,8,24].

PSI protocols can also be classified based on their sets size. In the literature,
Chen et al. [7] defined the PSI setting as symmetric when the sets have ap-
proximately the same size, and asymmetric when one of the sets is substantially



2 Amanda C. Davi Resende and Diego F. Aranha

smaller than the other. We propose a new terminology to prevent confusion with
the type of primitive being used (symmetric or asymmetric): balanced for sets
with approximately the same size and unbalanced for the opposite scenario1.

However, even with several PSI protocols proposed in the literature, most
real-word applications use naive solutions (as later detailed in Section 2.2). One
of the reasons is that some solutions are efficient when performing operations on
small sets of data, but become impractical for big sets. They may also have an
efficient execution time, but when performed in constrained environments with
low bandwidth became impractical as they transmit too much data.

Protocols proposed and implemented in several papers by Pinkas
et al. [36,38,39] are efficient in terms of computation (by using mostly symmet-
ric operations), but need to transmit a lot of data, while other works based on
public-key cryptography [4,7,19,27] need to transmit fewer data, but require less
efficient operations. Thus, the choice of the protocol depends on the PSI setting,
network bandwidth, storage space, security properties, among other factors.

1.1 Our contributions

Several of the PSI implementations available in the literature makes no use of
modern and efficient techniques for the implementation of cryptographic pro-
tocols, mainly based on public-key cryptography. We aim at filling this gap by
showing that the protocol previously proposed by Baldi et al. in [4] can be op-
timized as to reduce its communication complexity by more than one order of
magnitude and its running time by a factor of at least three. Our implementation
is available online at http://github.com/amandadavi7/PSI. In more detail, the
main contributions of this paper are:

– Improvements on Baldi et al. one-way PSI protocol based on public-
key cryptography [4], secure against semi-honest adversaries: We
show that the protocol, improved with our optimizations, becomes an effi-
cient and practical one-way PSI for the unbalanced setting2. Besides, it has
the desired forward secrecy property on the client side, that is usually more
vulnerable than the server, which guarantees that elements exchanged in the
past will remain confidential even if long-term secrets (keys) are exposed.

– We propose Cuckoo filters to reduce the amount of data to be
exchanged by the protocol and stored by the client: Cuckoo filters
present many advantages: (i) they require less storage space than other sim-
ilar approaches, like Bloom filter and Cuckoo hashing, for a false positive
rate (FPR) less than 3% [11]; (ii) they allow the delete operation (important
in some applications); and (iii) the lookup operation is performed in linear
time in the number of entries per bucket. To the best of our knowledge, this

1 Throughout this paper, the client set is always the smaller one.
2 In constrained scenarios, like 1Mbps of network bandwidth, our optimized protocol
remains a good choice for balanced one-way PSI. See Table 4 in the full version of
this paper [40].



Faster Unbalanced Private Set Intersection 3

is the first time that a Cuckoo filter is employed in PSI protocols, where
normally a Bloom filter is used.

– We provide an efficient software implementation of the protocols
using the Galbraith-Lin-Scott binary elliptic curve (GLS-254) with
point compression: To the best of our knowledge, this is the first time that
a state-of-the-art implementation of elliptic curves is used to instantiate PSI
protocols that rely on this type of operation. Our implementation of the
GLS-254 curve takes around 50,000 cycles to compute an exponentiation,
which is 24× faster than the Koblitz K-283 curve implementation used, for
example, in the PSI protocol presented in [37].

– Experimental comparison: We implemented our optimized protocol and
the original version [4] (both using the GLS-254 curve) and compared them
with the most promising PSI protocols in the literature, showing the results
of the (offline) preprocessing phase (when it is possible) and the online phase.
Our results show that with our optimizations, this protocol is efficient even
when used in bandwidth restricted scenarios.

1.2 Application to private contact discovery

In the private contact discovery problem, a user signs up to a messaging appli-
cation such as WhatsApp, Signal or Telegram, and would like to discover which
contacts in his/her address book are also registered. However, the user is not
willing to reveal his entire list of contacts. In this setting, the user typically has
a set with a few hundred contacts, while the messaging application can have
from a few million to a few billion users, characterizing the unbalanced setting.

Because of the sheer number of entries in the social network server’s side,
secure messaging applications such as TextSecure/Signal3 and Secret4, currently
employ naive approaches (see Section 2.2) to “solve” the private contact discovery
problem, since they have both better run time and communication complexity
when compared to state-of-the-art secure protocols. Signal is also experimenting
with the Intel SGX, a trusted execution environment, in order to improve the
security of private contact discovery5.

At the cost of tolerating a small FPR, our optimized protocol provides a
secure solution that works in this realistic scenario, being potentially useful for
secure social networks with millions of users.

Organization. This paper is organized as follows. In Section 2, we show nota-
tion and terminology used during the development of this work, a classification
of PSI protocols into categories and a brief overview of the main protocols in
each class. In Sections 3 and 4, the basic protocol is presented and the optimiza-
tions are proposed, respectively. In Section 5 we show the results and compare
3 https://whispersystems.org/signal/privacy/
4 https://medium.com/@davidbyttow/demystifying-secret-12ab82fda29f\#.
5433o6e8h

5 https://signal.org/blog/private-contact-discovery/



4 Amanda C. Davi Resende and Diego F. Aranha

them with the most promising protocols from the literature. Finally, in Section 6
we present our conclusions.

2 Related work for PSI protocols

We start by formalizing the notation used throughout the paper and other rele-
vant definitions.

2.1 Notation and terminology

– P1 and P2 are the participating parties of the protocols, where P1 is the
server and P2 the client, except when referring to server-aided (third party)
PSI protocols. X and Y are the respective input sets of P1 and P2, with size
n1 = |X| and n2 = |Y |. The set X is denoted by {x1, x2, ..., xn1

} and the set
Y by {y1, y2, ..., yn2

} where each element has bit-length σ.
– For a set S, the notation x R← S indicates that x was sampled from S with

uniform distribution.
– The operation a ?

= b denotes the comparison whether a is equal or not to b.
– κ = 128 is the symmetric security parameter.
– ρ = 40 is the statistical security parameter (hashing failure).
– ϕ = 256 is the size of the representation of a point in the GLS-254 binary

elliptic curve when using point compression (number of bits to store one
x-coordinate and two trace bits).

– η = 30 is the hash collision parameter, i.e., the probability of a hash collision
occurring is < 2−30.

– G is a multiplicative group of prime order q.
– H : {0, 1}∗ → {0, 1}l, H1 : {0, 1}σ → G, H2 : G→ {0, 1}l are hash functions

modeled as random oracles in the security analysis. In some cases, the output
length is defined as l = ρ+ log n1+ log n2, as suggested by Pinkas et al. [39],
instead of 2 ·κ. This produces the collision probability 2−η, which is suitable
for most applications.

– For the Cuckoo filter, we also define v as the fingerprint length (in bits), w
as the load factor (0 ≤ w ≤ 1), b as the number of entries per buckets, m as
the number of buckets, εmax as the upper bound on the false positive rate
(FPR) and ε as the observed FPR. The FPR is given in %.

2.2 Classification and related work of PSI protocols

Many one-way PSI protocols have been proposed in the open research litera-
ture [7,9,15,18,21,36,38,39]. They are constructed based on several primitives
such as Bloom filters [5], Cuckoo hashing [35], Oblivious Polynomial Evaluation
(OPE) [30], Oblivious Pseudorandom Function (OPRF) [14], Garbled Circuits
(GC) [41,42], Unpredictable Function [21], Homomorphic Encryption [12,16],
Oblivious Transfer (OT) [25,31], among others. Following Pinkas et al. [36,38,39],
PSI protocols can be classified into: naive hashing (or naive solution), server-
aided PSI (or third-party based PSI), PSI based on generic protocols (or circuit-
based PSI), OT-based PSI and PSI based on public-key cryptography.



Faster Unbalanced Private Set Intersection 5

Naive hashing. Both P1 and P2 use a hash function H to compute the hash
of their elements. P1 then computes x′i = H(xi) while P2 computes y′j = H(yj),
where 1 ≤ i ≤ n1 and 1 ≤ j ≤ n2. After, P1 sends values x′i to P2 which computes
the intersection between sets x′ and y′ by checking if y′j

?
= x′i for each value of

i and j. This approach is very efficient in both run time and communication.
However, if the hash function inputs were taken from a low-entropy domain D, P2

can discover all elements of P1 by performing a brute-force attack. One solution
could be to choose D with high entropy when possible. This would prevent the
problem, but consecutive executions of the protocol would still leak repeated
elements and would not guarantee forward secrecy since P2 can verify if a specific
element z ∈ D was part of the P1 set, by just checking if H(z)

?
= x′i. Nonetheless,

this naive protocol is employed by messaging applications for the private contact
discovery problem, and social networks like Facebook6 and Twitter7 to measure
advertisement conversion rates.

Server-aided PSI. Several works in the literature [8,9,22] have employed a
third party, in this case, called as server, to achieve better performance in PSI
protocols. The server can be semi-honest (cannot deviate from protocol, learns
only by observing communication between parties), covert (if it deviates from
protocol, it is detected with some probability by an honest party) or malicious
(can arbitrarily deviate from the protocol). In [22], Kamara et al. present a
semi-honest server protocol that takes 10 minutes with 12GB of communication
and 100 threads to evaluate 2 sets of 1 billion of elements each. However, such
protocols are secure only if the third party does not collude with any of the other
parties, thus having a different security model from conventional protocols.

PSI based on generic protocols. Generic secure computation uses arithmetic
or Boolean circuits to securely evaluate functions, among them, the set inter-
section. In [18], Huang et al. presented several of these protocols using Boolean
circuits, all of them constructed using Yao’s garbled circuits [41,42]. The sim-
plest protocol described in [18] involves the comparison of each element from P1

with each from P2. This approach is known as Pairwise-Comparison (PWC) and
involves O(n2) comparisons, which does not scale well for large sets. Another
more efficient approach presented in [18], the Sort-Compare-Shuffle (SCS) cir-
cuit, is more efficient, with complexity O(n log n). The major advantage of this
type of protocol is that they can be easily adapted to any other features that PSI
protocols may require, such as revealing only the intersection size or whether the
size is larger or smaller than a threshold. However, despite the improvements in
recent years, they still have a very high run time compared to others.

OT-based PSI. This category of protocols is the most recent and, up to date
the most promising, mainly because of the large performance improvements from
6 https://www.wired.com/2014/12/oracle-buys-data-collection-company-
datalogix/

7 https://support.twitter.com/articles/20170410



6 Amanda C. Davi Resende and Diego F. Aranha

OT extensions. The first protocol was proposed in 2013 by Dong et al. [9],
combining Bloom filters and OT [20] in their construction.

In 2014, Pinkas et al. [38] presented improvements to [9] and also proposed
a new and more efficient protocol combining OT and hashing. In 2015, they [36]
have shown that their previously proposal [38] could be improved by using the
permutation-based hash technique [2], since it reduces the size of each element
stored in the bins, which until then was the main overhead of the protocol. In
2016, Pinkas et al. [39] presented improvements for their earlier protocols, where
the complexity no longer depends on the size of each element. This solution is
the state of the art for balanced one-way PSI protocols and, depending on the
scenario (network bandwidth), also for unbalanced PSI protocols with security
against semi-honest adversaries. By using only symmetric operations in almost
all of its construction, the solution is extremely efficient8.

Public-key cryptography based PSI. Meadows [27] and Huberman et al. [19]
proposed one of the earliest PSI approaches based on public-key, even before
the PSI problem was formally defined in [15]. Both were based on the Diffie-
Hellman (DH) key exchange, taking advantage of its commutative properties.
Later Jarecki et al. [21] presented a PSI protocol that is secure against malicious
adversaries based on a Parallel Oblivious Unpredictable Function (POUF). In [4],
Baldi et al. relaxes the security of [21] to semi-honest adversaries. This protocol
is used to obtain the results of this paper. Another relevant PSI protocol was
shown by Chen et al. [7] and is based on the presented by Pinkas et al. [39], but
instead of performing OPRF (via OT) operations, it uses the Fan-Vercauteren
(FV) leveled Fully Homomorphic Encryption (FHE) scheme [12]. This change
considerably decreases the amount of data to be transmitted in the unbalanced
setting. Therefore, depending on the unbalanced setting and the network band-
width, Chen et al. [7] is faster than [39]. The good performance is however
restricted to 32-bit elements due to limitations in the parameters of the FHE
scheme.

The most recent work was presented by Kiss et al. [23]. They independently
noted that in some PSI protocols the server can perform operations on its data
only once and send the result to the client, which will use them in future ex-
ecutions to compute the intersection. They proposed using a Bloom filter (or
a counting Bloom filter) to decrease the amount of data to be transmitted or
stored by the client. These observations are very important in an unbalanced
setting since all operations and communication are only performed considering
the smaller client set. In terms of security, there is an important limitation in
their approach: in the protocol closest to our optimized proposal (DH-based
PSI [27,19]), the client and server reuse the same keys across all executions,
which does not provide forward secrecy. In terms of performance, during the
preprocessing phase alone (the setup phase, as in the paper), the server should

8 The protocol presented in [39] uses asymmetric operations [31] to generate the OT
bases. However, the cost of these operations is negligible when the number of elements
evaluated is substantially greater than the value of κ.



Faster Unbalanced Private Set Intersection 7

send n1ϕ bits to the client and the client computes n1 exponentiations. For ex-
ample, if n1 = 224 it will be necessary to transmit and store 512MB and to
perform 224 exponentiations on the client side.

One efficient way to instantiate PSI protocols based on public-key cryptog-
raphy is to use elliptic curves. The exponentiation on elliptic curves becomes a
scalar multiplication and we will keep the exponentiation notation throughout
the paper for compatibility with other works.

3 The basic protocol

Jarecki and Lui [21] presented a one-way PSI protocol secure against mali-
cious adversaries based on the hardness of the One-More-Gap-Diffie-Hellman
(OMGDH) problem and a Zero-Knowledge Proof (ZKP). Later, Baldi et al. [4]
relaxed the security of this protocol to be secure against semi-honest adversaries,
by removing the ZKP. This protocol is shown in Figure 1 and works as follows:
for each element xi ∈ X, the server computes the hash H1(xi), the exponentia-
tion H1(xi)

α with the same exponent for all the elements, and again computes
the hash txi = H2(H1(xi)

α), sending values txi to the client. For each element
yi ∈ Y , the client computes the hash H1(yj), the exponentiation aj = H1(yj)

βj

with ephemeral exponents βj and sends values aj to the server. The server com-
putes a′j = (aj)

α for each aj using the same α used previously and sends values
a′j to the client. The client then calculates tyj = H2((a

′
j)

1/βj ), by “removing” the
exponents that were applied earlier. Finally, the client computes the intersection
by checking if tyj ∈ {tx1, tx2, ..., txn1

}. The long-term secret is the server key α.

4 Optimizations

We propose a few modifications to the protocol presented in Section 3 that
drastically improve its performance during the preprocessing phase.

(i) The offline phase is executed just once and the results stored in a database.
We significantly reduce the size of the database by using a Cuckoo filter [11].

(ii) We implement the protocol based on the GLS-254 elliptic curve, which im-
proves its computational performance.

Below these improvements are described in detail.

4.1 Generating the database

As it can be seen in Figure 1, the protocol is divided into two parts: offline and
online. The offline part is executed without the need of any communication from
the server to the client, except for any possible negotiation to define the initial
parameters such as the group G and its order q. Thus, the server can mask all
elements using α and the hash functions H1 and H2 (txi = H2(H1(xi)

α)) before
receiving connections. Because of this feature, the offline part can be performed



8 Amanda C. Davi Resende and Diego F. Aranha

Fig. 1. Basic PSI protocol proposed in [4] that relaxes the security of the [21] to
be secure against semi-honest adversaries. H1 and H2 are hash functions modeled as
random oracles. [4, Adapted].

only once, where the server would calculate the mask of each element and send
them to the client, which would store them for use in each execution of the
protocol. Therefore, only the online part needs to be used. The resulting proto-
col is very efficient when used in unbalanced PSI setting because in the online
part all operations are performed only on the client elements (3n2 asymmetric
cryptographic operations and 2n2ϕ bits are transmitted).

4.2 Reducing the database size

The database size increases as the server set grows. For example, assuming each
masked server element has l bits and ρ = 40, as defined in Section 2.1, with
n2 = 28 and n1 = 224, each masked element would have l = 72 bits. Since
the server has 224 elements, all server masked elements would occupy 144MB.
However, if the scale changes from a few million to a few billion, as is the case of
a large messaging application with approximately 230 users, the server masked
elements would need 9.75GB of space. Downloading and storing this data on
devices with low memory resources, such as mobile devices, or with constrained
network connection (low bandwidth or/and high latency) can be prohibitive. To
reduce the size of the data, techniques have been used previously in the literature
such as Bloom filters and their variants [5,13], and Cuckoo hashing [35].

We take a different approach and propose to use Cuckoo filters [11]. They
have clear advantages over Bloom filters and Cuckoo hashing, since they allow
the delete operation (essential in private contact discovery), besides the inser-
tion and lookup operations, using significantly less space than the Bloom filter



Faster Unbalanced Private Set Intersection 9

variants and the Cuckoo hashing by storing only the element’s fingerprint. For
the two examples given above, a Cuckoo filter would use 5×10−5 MB and 3GB,
respectively9. We assume that the reader is familiar with the concept and for
more detail the reader is invited to see [11,40]. To the best of our knowledge,
this is the first application of Cuckoo filters to the problem of PSI.

4.3 Efficient software implementation of GLS-254 elliptic curve

Our implementation of ECC is based on the latest version of the GLS-254 soft-
ware [33] available in SUPERCOP10. The binary GLS curve is a particularly
efficient choice for our target platform due to its native support to binary field
arithmetic, the lambda coordinate system [34] and the GLS endomorphism for
fast scalar multiplications [17], achieving the current speed record for this oper-
ation. The code is structured in three layers: an efficient vectorized implemen-
tation of binary field arithmetic targeting Intel vector instruction sets; a regular
window-based method for variable-base scalar multiplication implemented in
constant time; a thin protocol layer implementing the DH key exchange. The
exponentiations in our protocol were heavily based on the two last layers, while
hashing and point compression were directly implemented over the field arith-
metic.

The approach selected for hashing was a combination of the SHA256 hash
function with the binary Shallue-van de Woestijne well-bounded encoding al-
gorithm [1]. Elements are first hashed to a binary field element u ∈ F2m using
SHA256, and then the encoding outputs the lambda coordinates (x, λ) of a point
over the binary elliptic curve. This approach requires only a single inversion, a
quadratic equation solution and some cheaper field operations, and provides bet-
ter statistical properties than popular try-and-increment heuristics. Point com-
pression adapts a rather classical technique [26]. The λ coordinate defined over
a quadratic extension F22m [s]/(s2 + s+ 1) as (λ0 + λ1s) is compressed to a pair
of trace values (Tr(λ0), T r(λ1)), which can later be used to solve a quadratic
equation and disambiguate among the four possible solutions. In total, 256 bits
are used by concatenating the 254 bits of the x-coordinate with the two trace
bits. Decompression again requires a field inversion, solving a quadratic equation
and some cheaper binary field operations. Our entire code runs in constant time
for side-channel resistance, including the quadratic solver [1].

4.4 Our optimized protocol

Figure 2 presents our optimized protocol based on Baldi et al. [4]. In the first
part (offline), the server generates a Cuckoo filter, from his/her masked elements,
using the insertion operation (CF.Insert), and sends the filter (CF ) to the client.
The online part is divided in two: in the first, client and server interact in order
to mask the elements of the client. In the second, the client with his/her masked
9 These values may change if the FPR changes. Here we set εmax = 0.009155%.

10 https://bench.cr.yp.to



10 Amanda C. Davi Resende and Diego F. Aranha

elements, checks if each one of them belongs to the filter, through the lookup
operation (CF.Check), thus computing the set intersection. The last part of the
protocol is the step of updating the filter. The server has a set of elements Z
that he/she would like to insert, such as new users of a message application; or
to delete, in the case where some users no longer use the service. In both cases,
the server masks each element zk ∈ Z using α and sends them to the client.
Along with these values, a variable is also sent to tell the client what is the type
of update, if it is an insertion or a deletion.

In the insertion operation, the user must first check the load factor w of the
filter. If it is greater than 0.95, the user must request the server to generate a
new filter using all the elements, as in the first part of the protocol. Otherwise,
the client inserts the element in the filter CF. The value 0.95 was set in [11] to
be the highest w for the filter to has high efficiency of space and lookup. After
that, it is hard to insert elements without errors. Therefore, when w is greater
than 0.95, one must generate a new and larger filter. And, in the case of deletion,
the element is removed from the filter without the need to generate a new one.

4.5 Correctness and security guarantees with our modifications

The correctness guarantees of the protocol with the modification shown above
follow from the correctness of the original protocol by Jarecki and Lui [21] and
Baldi et al. [4] and the correctness of the Cuckoo filter (up to false positives)
[10,11]. This happens due to the fact that the same messages are exchanged
and the same computational steps are performed by both parties, with the only
difference that the server’s masked elements are encoded in a Cuckoo filter.

The FPR of the Cuckoo filter can be as small as the application requires
considering the cost of increasing the filter size. We have 2 different FPR: εmax
and ε. The first is the upper bound and does not take into account the load factor
of the filter, and the second is the observed measure that takes into account the
load factor (for more details see the full version of this paper [40]).

The security guarantees of the modified protocol also follow from the security
of the original protocol, which is based on the hardness of the OMGDH problem.
We apply only one modification in the protocol that does not change the security:
we replace the transmission of the server’s masked elements to the client, in the
offline phase, by sending a Cuckoo filter which encodes the masked elements.

However, sending the Cuckoo filter does not reveal any more information
than sending the masked elements. By assumption, there is an algorithm A
that the attacker can use on the modified protocol (with the Cuckoo filter) and
breaks security with non-negligible probability γ. It is possible to devise the
algorithm A′ with which the attacker can use to break the original protocol
and works as follows: first A′ runs the original protocol and keeps the raw set
of masked elements received from the server. Then, the attacker encodes the
masked elements as a Cuckoo filter and feeds A with it. Therefore, A observes
the same view as in a run of the modified protocol and thus can break security
with probability γ. Thus, A′ breaks the security with the same probability.



Faster Unbalanced Private Set Intersection 11

Fig. 2. Our optimized protocol combining the PSI protocol of Baldi et al. [4] with
Cuckoo filter [11]. CF is a Cuckoo filter, CF.Insert is the insertion operation, CF.Check
is the lookup operation and CF.Delete is the deletion operation.

We have preserved forward secrecy on the client side, as in the original ver-
sion [4]. This weak notion of forward secrecy ensures that elements exchanged
in the past will remain confidential even if long-term secrets (keys) are exposed.
In the case of private contact discovery, where the client set is always almost
the same, compromising the client once reveals almost all the contacts used in
previous executions, so forward secrecy does not provide much advantage. How-
ever, when the client set changes from one execution to another, such as in the
case of malware detection, where the client set may store networking data col-
lected during a time interval, having forward secrecy is important. Modifying
the protocol to relax forward secrecy allows precomputation in the client side
which potentially improves its performance.



12 Amanda C. Davi Resende and Diego F. Aranha

5 Implementation and experimental evaluation

We ran our experiments in a computer equipped with an Intel Haswell i7-4770K
quadcore CPU with 3.4GHz and 16GB of RAM with Turbo Boost turned off.
All tests were performed using only this machine, and network bandwidth and
latency were simulated using the Linux command tc. For the Local Area Network
(LAN) setting, the two parties (client and server) are connected via local host
with 10Gbps of bandwidth and a 0.2ms Round-Trip Time (RTT). In addition
to the LAN, we also considered three Wide Area Network (WAN) settings with
100Mbps, 10Mbps and 1Mbps of bandwidth, each with an 80ms RTT. These
settings follow what was proposed by Chen et al. [7].

We evaluate the performance of the PSI protocols in the unbalanced setting,
(in the full version [40] we show the performance in the balanced setting) where
n2 ∈ {5535, 11041} and n1 ∈ {216, 220, 224}, as proposed by Chen et al. [7]. The
size of each element was set to be 32 bits (σ = 32 bits), but this does not impact
the performance of our protocol due to hashing. The output length of the hash
function used in Baldi et al. [4] is l, as defined in Section 2.1. The run time of
each protocol was measured from the beginning of the execution until the client
computes the intersection. Each protocol was executed 10 times and the run
times were computed as the average of these executions as done in [7,39].

5.1 Implementation

The implementation of OT+Hashing [39] was obtained from Pinkas et al. [39],
available at https://github.com/encryptogroup/PSI. They used OpenSSL
(v.1.0.1e) for the symmetric cryptographic primitives, the implementation of [3]
the code available at https://github.com/encryptogroup/OTExtension for
the OT extension, and the MIRACL library (v.5.6.1) for ECC. According to
our benchmarking, an exponentiation within their codebase takes 1.2 million
cycles11, which indicates a misconfigured version of MIRACL. Up to now, there
is no implementation available for the Chen et al. [7] protocol, but we tried to
reproduce the benchmarking scenarios as close as possible to their work.

We implemented our optimized protocol and the original [4] using the soft-
ware provided by Pinkas et al. [39] replacing the Koblitz K-283 curve, available
in MIRACL, by the GLS-254 curve. Our implementation of the GLS-254 curve
takes around 50,000 cycles to compute an exponentiation, which is 24× faster
than [39]. We note, however, that the K-283 curve is a more conservative choice
of parameters. We used the Cuckoo filter implementation of Fan et al. [11] avail-
able at https://github.com/efficient/cuckoofilter. Our implementation
is available at http://github.com/amandadavi7/PSI.

All protocols were implemented using C and C++ programming languages
and executed using the same hardware. The same libraries were used to perform
the cryptographic operations, except for the OTs in OT+Hashing [39] which still
use the Koblitz curve. This does not impact the run time of the protocol since
the cost of this operation is negligible when the number of elements is large.
11 Average of 220 exponentiations performed on our Haswell machine.



Faster Unbalanced Private Set Intersection 13

5.2 Preprocessing

To improve performance, some PSI protocols can be divided into two phases
(online and offline) without impact on security. The offline part of the proto-
col can be executed only once and reused in future executions. In the protocol
proposed by Chen et al. [7], the server precomputes some values to facilitate
the underlying FHE multiplications. In this case, only the server will use the
precomputed data and no transfer to the client is required.

Unlike Chen et al. [7], in the basic protocol [4] presented in Section 3, the
server can preprocess the encryption/masking of all elements and send them to
the client, which must store and reuse this data in all subsequent executions to
calculate the intersection, as shown in Section 4.1. Beyond using the precom-
puting allowed in the basic protocol, our approach also inserts each encrypted
element into a Cuckoo filter, according to Section 4.2, in order to reduce the
data that must be transmitted to the client and that should be stored.

Table 1 presents the preprocessing and data transmission time using the
network settings defined in the beginning of Section 5. The run times of Chen
et al. were obtained from their own paper [7], and since some parameters of the
FHE can generate more efficient processing depending on the configuration, the
preprocessing column may have two different values (we separate them with the
symbol *) that will be used in the next section.

We note that the run times for the protocol proposed by Baldi et al. in [4]
here presented, are for an implementation based on the binary elliptic curve
GLS-254 and not for the original implementation proposed in [4] which works
over a 1024-bit prime number. The improvements would be way more drastic
had the original implementation proposed in [4] been used for comparison.

It is interesting to note that the preprocessing run times of our optimized
protocol and our implementation of the original Baldi et al. protocol [4] are prac-
tically the same since we perform the same operations. However, by employing
a Cuckoo filter to reduce the amount of data to be transmitted, our optimized
version transmits up to 3.3× less data than [4] and is accordingly 3.3× faster.

5.3 Comparison to others PSI protocols

The performance evaluation of the protocols will be performed in the unbalanced
setting. As the code of the protocol presented by Chen et al. [7] was not available,
we obtained its and OT+Hashing [39] results from [7]. As shown in Section 2.2,
PSI protocols can be classified into five categories. Because the naive hashing and
server-aided approaches have different security notions from the others, they will
not be analyzed. PSI based on generic protocols are out of scope because they
have limitations in run time and memory. Among the two remaining categories,
OT-based PSI and PSI based on public-key, we will analyze the best protocol in
each category comparing the results with our optimized proposal.

Table 2 shows the run time (in seconds) and the communication (in MBs) of
the unbalanced scenario considering both the LAN and WAN settings. We have



14 Amanda C. Davi Resende and Diego F. Aranha

Transmission time (s)
Comm. Preprocessing LAN WAN

Protocol n1 n2 Size (MB) Time (s) 10Gbps 100Mbps 10Mbps 1Mbps

Chen
et al. [7]

224
11041 - 70.90, ∗76.80 - - - -
5535 - 64.10, ∗71.20 - - - -

220
11041 - 6.40 - - - -
5535 - 4.30 - - - -

216
11041 - 1.00 - - - -
5535 - 0.70 - - - -

Baldi
et al. [4]

224
11041

160.00 334.17 0.13 15.73 136.32 1,345.55
5535

220
11041

10.00 20.91 0.01 1.10 8.38 84.40
5535

216
11041

0.56 1.31 0.01 0.19 0.53 5.09
5535

Our
protocol

224
11041

48.00 333.62 0.06 4.82 40.71 403.68
5535

220
11041

3.00 20.78 0.00 0.60 2.55 25.63
5535

216
11041

0.19 1.30 0.00 0.01 0.19 1.56
5535

Table 1. Preprocessing and transmission time for PSI protocols. The WAN setting
has 80ms RTT and the LAN 0.02ms RTT. For the filter in our optimized protocol we
have v = 16, b = 3, w = 0.66 and εmax = 0.009155%. More details about Cuckoo filter
is given in the full version of this paper [40]. Chen et al. [7] does not have transmission
time, since only the server will use the precomputed data. Best values marked in bold.

analyzed the best protocol for the OT-based PSI, the two best protocols for PSI
based on public-key and we compare them with our optimized proposal.

Amongst the public-key protocols, our optimized proposal and the Baldi et
al. [4] have the same communication cost (2n2ϕ bits) and, regarding run time, our
approach is slightly better by employing the Cuckoo filter in the server database,
what makes the final computation of the intersection more efficient, since the
filter is already constructed and the lookup is done in O(b) per element. Because
of this, we omitted the figures related to Baldi et al. protocol [4] in Table 2. In
addition, comparing with the Chen12 et al. protocol [7], our optimized approach
transmits up to 59× less data and is up to 76× faster with 10Gbps, for n2 = 5535
and n1 = 224. Comparing our optimized protocol with OT+Hashing [39], our
approach transmits up to 1, 413× less data and is up to 74× faster with 10Gbps
of bandwidth and 946× faster with 1Mbps, for n2 = 5535 and n1 = 224.

12 In the communication column of Table 2, the protocol [7] can have 2 different values,
because according to the networking setting it is better that operations take more
time and generate less data than taking less time but producing more data. This
trade-off can be raised in FHE by adjusting the system parameters.



Faster Unbalanced Private Set Intersection 15

Transmission time (s)
Parameters Comm. LAN WAN

Type Protocol n1 n2 Size (MB) 10Gbps 100Mbps 10Mbps 1Mbps

OT

224
11041 480.90 40.50 88.00 449.50 4,084.80

OT 5535 480.40 40.10 87.90 449.20 4,080.60
+

220
11041 30.90 3.30 7.00 29.80 263.70

Hashing [39] 5535 30.40 3.10 6.80 29.00 260.00

216
11041 2.60 0.70 1.50 3.30 21.60
5535 2.10 0.70 1.40 2.90 19.80

Public
key

Chen et al. [7]

224
11041 23.20, ∗21.10 44.50 46.90 63.50 ∗214.00
5535 20.10, ∗12.50 41.10 43.10 ∗49.10 ∗139.90

220
11041 11.50 6.40 7.60 15.80 99.00
5535 5.60 8.60 9.20 13.30 53.60

216
11041 4.10 2.00 2.40 5.40 35.00
5535 2.60 1.10 1.30 3.20 21.80

224
11041 0.67 0.87 1.52 1.86 7.81

Our 5535 0.34 0.54 1.04 1.21 4.31
optimized

220
11041 0.67 0.67 1.31 1.65 7.59

protocol 5535 0.34 0.34 0.83 1.00 3.97

216
11041 0.67 0.66 1.29 1.64 7.57
5535 0.34 0.33 0.82 0.99 3.93

Table 2. Run time and communication for unbalanced PSI protocols. In the commu-
nication column, the Chen et al. [7] may have two values due to different parameters
used in the FHE system. For more information, see [7]. The results of OT+Hashing [39]
and Chen et al. [7] were obtained from [7]. Best values marked in bold.

Our optimized approach performs well in unbalanced scenarios because our
operations depend only on the client set size, with 2n2ϕ bits transmitted and 3n2
exponentiations. Although exponentiations are considered an expensive opera-
tion when performed a small number of times and with an efficient elliptic curve
implementation, a curve-based protocol becomes competitive with the others.

In a recent paper, Kiss et al. [23] present many PSI protocols, where the
closest to our proposal is ECC-DH-PSI [27,19]. In the preprocessing stage, the
server needs to compute n1 exponentiations like in our protocol, but the client
also needs to compute n1 exponentiations. In some applications, such as private
contact discovery, this amount of exponentiations in the client side could be
prohibitive, because typically the client has a resource constrained device. Con-
sidering n1 = 220 and according to [23], the preprocessing takes 1,325 s while
our proposal takes 21 s (using a 1Gbps network), which is 63× faster. More-
over, the server sends n1ϕ (ϕ = 284 in their case), that adds up to 35.5MB for
ε = 0.1% and ε = 10−7%, while our proposal just sends a 2.125MB filter for
ε = 0.05% (v = 16, w = 0.94 and b = 17) and a 5MB filter for ε = 1.6× 10−7%
(v = 32, w = 0.8 and b = 5). This is 15.7× and 7.1×less data to be transmitted,
respectively.



16 Amanda C. Davi Resende and Diego F. Aranha

In the online phase the amount of data to be transmitted is asymptotically
the same, 2n2ϕ, but concretely Kiss et al. [23] use ϕ = 284 bits for the K-
283 curve with compression, and we have ϕ = 256 bits for the GLS-254 curve.
Considering the number of exponentiations, their approach needs to compute 2n2
operations while our protocol computes 3n2. This advantage happens because
the ECC-DH-PSI from [23] does not provide forward secrecy on the client side
and reuse the same key across all protocol executions.

In order to reduce the amount of data to be stored by the client, Kiss et
al. [23] use a Bloom filter, while our optimized approach employs a Cuckoo
filter. The Cuckoo filter allows deletions while the traditional Bloom filter does
not and uses 30% less space for the same FPR [10]. While counting Bloom filters
do allow deletions, this happens at the cost of using 3-4× more space.

In summary, our protocol provides an efficient preprocessing phase, forward
secrecy on the client side and a filter that needs less storage space. The ECC-
DH-PSI protocol from [23] has an asymptotically faster online phase, but the
performance improvement is small in the unbalanced setting when n2 is small.
Moreover, their protocol does not provide any forward secrecy to clients and the
preprocessing phase is expensive and can be prohibitive on mobile devices.

6 Conclusions

Private set intersection is an important cryptographic primitive to allow two par-
ties to perform joint operations on their private sets without revealing additional
information beyond the intersection. Despite many protocols available in the lit-
erature, few of them provide solutions that are efficient in both run time and
data transmission. In most approaches, the computational cost is based on both
the server and client set sizes, giving no advantages in the unbalanced setting.

We show that the protocol of Baldi et al. based on public-key cryptography,
with our optimizations, becomes an efficient, practical and simple one-way PSI
protocol for unbalanced sets that ensures forward secrecy on the client side.
Additionally, we implemented the protocol using the GLS-254 binary elliptic
curve with point compression using techniques considered state of the art, that
allow a better comparison with the other proposed approaches.

Our optimized protocol with this implementation provides an interesting
trade-off between preprocessing and the online phase of the protocol, where for
n1 = 224 the preprocessing takes less than six minutes (recalling that this phase
needs to be done only once) and the online phase for n2 = 11041 takes less than
8 seconds even with 1Mbps bandwidth. The client needs to store only 48MB
of information for this configuration. We believe that our improved protocol is
a practical alternative for the solutions currently in place for privacy-preserving
contact discovery in existing social networks.

Acknowledgements

This work was in part supported by the Intel/FAPESP grant 14/50704-7, project
“Secure Execution of Cryptographic Algorithms”. We thank Anderson Nasci-
mento and Fabian Monrose for discussion and comments on an earlier version.



Faster Unbalanced Private Set Intersection 17

References

1. Aranha, D.F., Fouque, P., Qian, C., Tibouchi, M., Zapalowicz, J.: Binary Elligator
Squared. In: SAC. LNCS, vol. 8781, pp. 20–37. Springer (2014)

2. Arbitman, Y., Naor, M., Segev, G.: Backyard Cuckoo Hashing: Constant Worst-
Case Operations with a Succinct Representation. In: FOCS. pp. 787–796. IEEE
Computer Society (2010)

3. Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More Efficient Oblivious Trans-
fer and Extensions for Faster Secure Computation. In: ACM Conference on Com-
puter and Communications Security. pp. 535–548. ACM (2013)

4. Baldi, P., Baronio, R., Cristofaro, E.D., Gasti, P., Tsudik, G.: Countering GAT-
TACA: Efficient and Secure Testing of Fully-sequenced Human Genomes. In: ACM
Conference on Computer and Communications Security. pp. 691–702. ACM (2011)

5. Bloom, B.H.: Space/Time Trade-offs in Hash Coding with Allowable Errors. Com-
mun. ACM 13(7), 422–426 (1970)

6. Camenisch, J., Zaverucha, G.M.: Private Intersection of Certified Sets. In: Financial
Cryptography. LNCS, vol. 5628, pp. 108–127. Springer (2009)

7. Chen, H., Laine, K., Rindal, P.: Fast Private Set Intersection from Homomorphic
Encryption. In: CCS. pp. 1243–1255. ACM (2017)

8. Debnath, S.K., Dutta, R.: Towards Fair Mutual Private Set Intersection with Lin-
ear Complexity. Security and Communication Networks 9(11), 1589–1612 (2016)

9. Dong, C., Chen, L., Wen, Z.: When Private Set Intersection Meets Big Data: An
Efficient and Scalable Protocol. In: ACM Conference on Computer and Commu-
nications Security. pp. 789–800. ACM (2013)

10. Eppstein, D.: Cuckoo Filter: Simplification and Analysis. In: SWAT. LIPIcs, vol. 53,
pp. 8:1–8:12. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016)

11. Fan, B., Andersen, D.G., Kaminsky, M., Mitzenmacher, M.: Cuckoo Filter: Prac-
tically Better Than Bloom. In: CoNEXT. pp. 75–88. ACM (2014)

12. Fan, J., Vercauteren, F.: Somewhat Practical Fully Homomorphic Encryption.
IACR Cryptology ePrint Archive (2012)

13. Fan, L., Cao, P., Almeida, J.M., Broder, A.Z.: Summary Cache: A Scalable Wide-
Area Web Cache Sharing Protocol. IEEE/ACM Trans. Netw. 8(3), 281–293 (2000)

14. Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword Search and Oblivious
Pseudorandom Functions. In: TCC. LNCS, vol. 3378, pp. 303–324. Springer (2005)

15. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient Private Matching and Set Inter-
section. In: EUROCRYPT. LNCS, vol. 3027, pp. 1–19. Springer (2004)

16. Gentry, C.: Fully Homomorphic Encryption using Ideal Lattices. In: STOC. pp.
169–178. ACM (2009)

17. Hankerson, D., Karabina, K., Menezes, A.: Analyzing the Galbraith-Lin-Scott
Point Multiplication Method for Elliptic Curves over Binary Fields. IEEE Trans.
Computers 58(10), 1411–1420 (2009)

18. Huang, Y., Evans, D., Katz, J.: Private Set Intersection: Are Garbled Circuits
Better than Custom Protocols? In: NDSS. The Internet Society (2012)

19. Huberman, B.A., Franklin, M.K., Hogg, T.: Enhancing Privacy and Trust in Elec-
tronic Communities. In: EC. pp. 78–86 (1999)

20. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending Oblivious Transfers Effi-
ciently. In: CRYPTO. LNCS, vol. 2729, pp. 145–161. Springer (2003)

21. Jarecki, S., Liu, X.: Fast Secure Computation of Set Intersection. In: SCN. LNCS,
vol. 6280, pp. 418–435. Springer (2010)



18 Amanda C. Davi Resende and Diego F. Aranha

22. Kamara, S., Mohassel, P., Raykova, M., Sadeghian, S.S.: Scaling Private Set Inter-
section to Billion-Element Sets. In: Financial Cryptography. LNCS, vol. 8437, pp.
195–215. Springer (2014)

23. Kiss, A., Liu, J., Schneider, T., Asokan, N., Pinkas, B.: Private Set Intersection for
Unequal Set Sizes with Mobile Application. PoPETs 2017(4), 97–117 (2017)

24. Kissner, L., Song, D.X.: Privacy-Preserving Set Operations. In: CRYPTO. LNCS,
vol. 3621, pp. 241–257. Springer (2005)

25. Kolesnikov, V., Kumaresan, R.: Improved OT Extension for Transferring Short
Secrets. In: CRYPTO (2). LNCS, vol. 8043, pp. 54–70. Springer (2013)

26. Lopez, J., Dahab, R.: New Point Compression Algorithms for Binary Curves. In:
IEEE Information Theory Workshop - ITW ’06. pp. 126–130 (March 2006)

27. Meadows, C.A.: A More Efficient Cryptographic Matchmaking Protocol for Use
in the Absence of a Continuously Available Third Party. In: IEEE Symposium on
Security and Privacy. pp. 134–137. IEEE Computer Society (1986)

28. Mezzour, G., Perrig, A., Gligor, V.D., Papadimitratos, P.: Privacy-Preserving Re-
lationship Path Discovery in Social Networks. In: CANS. LNCS, vol. 5888, pp.
189–208. Springer (2009)

29. Nagaraja, S., Mittal, P., Hong, C., Caesar, M., Borisov, N.: BotGrep: Finding
P2P Bots with Structured Graph Analysis. In: USENIX Security Symposium. pp.
95–110. USENIX Assoc. (2010)

30. Naor, M., Pinkas, B.: Oblivious Transfer and Polynomial Evaluation. In: STOC.
pp. 245–254. ACM (1999)

31. Naor, M., Pinkas, B.: Efficient Oblivious Transfer Protocols. In: SODA. pp. 448–
457. ACM/SIAM (2001)

32. Narayanan, A., Thiagarajan, N., Lakhani, M., Hamburg, M., Boneh, D.: Location
Privacy via Private Proximity Testing. In: NDSS. The Internet Society (2011)

33. Oliveira, T., Aranha, D.F., Hernandez, J.L., Rodríguez-Henríquez, F.: Improving
the performance of the GLS254. CHES Rump Session (2016)

34. Oliveira, T., López, J., Aranha, D.F., Rodríguez-Henríquez, F.: Two is the Fastest
Prime: Lambda Coordinates for Binary Elliptic Curves. J. Cryptographic Engi-
neering 4(1), 3–17 (2014)

35. Pagh, R., Rodler, F.F.: Cuckoo Hashing. In: ESA. LNCS, vol. 2161, pp. 121–133.
Springer (2001)

36. Pinkas, B., Schneider, T., Segev, G., Zohner, M.: Phasing: Private Set Intersection
Using Permutation-based Hashing. In: USENIX Security Symposium. pp. 515–530.
USENIX Assoc. (2015)

37. Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure Two-Party Com-
putation Is Practical. In: ASIACRYPT. LNCS, vol. 5912, pp. 250–267. Springer
(2009)

38. Pinkas, B., Schneider, T., Zohner, M.: Faster Private Set Intersection Based on OT
Extension. In: USENIX Security Symposium. pp. 797–812. USENIX Assoc. (2014)

39. Pinkas, B., Schneider, T., Zohner, M.: Scalable Private Set Intersection Based on
OT Extension. IACR Cryptology ePrint Archive (2016)

40. Resende, A.C.D., Aranha, D.F.: Faster Unbalanced Private Set Intersection. IACR
Cryptology ePrint Archive (2017), https://eprint.iacr.org/2017/677

41. Yao, A.C.: Protocols for Secure Computations (Extended Abstract). In: FOCS.
pp. 160–164. IEEE Computer Society (1982)

42. Yao, A.C.: How to Generate and Exchange Secrets (Extended Abstract). In: FOCS.
pp. 162–167. IEEE Computer Society (1986)


