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Abstract. The two main challenges in deploying real world secure poker
protocols lie in enforcing the distribution of rewards and dealing with
misbehaving/aborting parties. Using recent advances in cryptocurrencies
and blockchain techniques, Kumaresan et al. (CCS 2015) and Bentov et
al. (ASIACRYPT 2017) were able to solve those problems for the gen-
eral case of secure multiparty computation. However, in the specific case
of secure poker, they leave major open problems in terms of efficiency
and security. This work tackles these problems by presenting the first
full-fledged simulation-based security definition for secure poker and the
first fully-simulatable secure poker protocol that provably realizes such a
security definition. Our protocol provably enforces rewards distribution
and penalties for misbehaving parties, while achieving efficiency compa-
rable to previous tailor-made poker protocols, which do not have formal
security proofs and rewards/penalties enforcement. Moreover, our proto-
col achieves reduced on-chain storage requirements for the penalties and
rewards enforcement mechanism.

1 Introduction

Shamir, Rivest and Adleman, soon after their seminal work on the RSA cryptosys-
tem, started exploring new ideas on cryptography inspired by everyday activities
such as playing games. In particular, they started investigating how to play poker
remotely [26], a problem related to very interesting questions in the distributed
setting. For example, securely shuffling with remote parties requires every player
to participate in the procedure; otherwise, security may not be assured at all for
the participants.

Mental Poker, Cryptography and the Gambling Market: Since its origins

the research on mental poker and card games worked as a drive for the research in
cryptography. The original work of Shamir et al. inspired a number of follow-ups,
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starting in the eighties with the works on the feasibility of playing mental games,
e.g. [11]. The first protocols for mental poker faced several limitations due to poor
efficiency, which was improved in the following decades several by a number of
works, e.g. [3,33,32,9,25,29,28].

In economic terms, online poker has been a strong industry since the “Poker
Boom” of the 2000s, as described in prestigious economic venues [15]. Much of the
strong interest in online gambling has its advent due to the appearance of online
casinos. Despite legal restrictions imposed by new US legislation, players resort
to websites based in other countries. For example, a Financial Times report [1]
describes how UK firms filled the vacuum left by the US counterparts in the
estimated 40 billion dollars global market of international online gambling (with
one of the major online casino reporting 22 millions users and revenue of 2.5
billions dollars).

The current model of online gambling is based on trusted casinos, which are
responsible for generating the randomness used to shuffle the cards and for en-
forcing the proper execution of the game. In contrast, a real world poker game
requires almost no trust among the players, or between players and third par-
ties like casinos. In the current model, a malicious casino or an insider attacker
working for a casino can greatly influence the outcome of the game by manipu-
lating the randomness used for shuffling or by leaking additional information to
the players. And such cases have already happened (see Section “Integrity and
Fairness” of [30] for more details). This state of affairs represents a clear disadvan-
tage from online poker in comparison with a game played face-to-face. Techniques
from mental poker can be used to overcome this problem and securely play poker
online without the need of trusted casinos.

Challenges Preventing Deployment: Two central problems preventing de-

ployment of secure poker protocols that were not addressed in the literature until
very recently are protecting against aborts and ensuring that winners get their
rewards. The first problem consists in players who leave the game prematurely
(i.e. abort the protocol execution) causing the protocol to freeze. Castellà-Roca et
al. [9] investigated this scenario and proposed a protocol that we show to be flawed
(details in the full version of this paper [12]). The second problem of ensuring that
a player actually gets a reward if it wins has only been tackled very recently after
the advent of cryptocurrencies and blockchain technologies. Kumaresan et al. [20]
addressed the problem with the help of Bitcoin and blockchains following the ap-
proach of [2,6]. They concurrently also dealt with the abort problem in a far more
satisfactory way by imposing financial penalties on the aborting parties and using
the collected money to compensate the remaining players.

Basically, the protocol of Kumaresan et al. [20] uses an unfair multiparty com-
putation protocol along with many simple smart contracts and Bitcoin deposits
to ensure that the rewards are distributed to players whenever the relevant con-
ditions are fulfilled, and to enforce financial penalties on aborting/misbehaving
parties. Using this strategy, a specific poker protocol was also designed, although
with inefficiencies (for a more detailed discussion see [7, Section 6]). A significant
improvement was obtained by Bentov et al. [7] by leveraging the power of stateful
contracts to greatly improve the efficiency, solving some of the bottlenecks in the
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previous protocol. While the protocol in [20] requires O(n2) rounds of interac-
tion with the cryptocurrency network and an amount of collateral linear in the
number of messages exchanged during the protocol, the protocol of Bentov et
al. [7] requires O(1) rounds of interaction with the cryptocurrency network and
an amount of collateral equal to the compensation the players would receive. The
central idea for improving the performance and decreasing the amount of collat-
eral is to use a single stateful contract that keeps all the deposits and executes the
unfair protocol off-chain. After the initial deposits, this contract is only involved
in two situations: for the cash distribution, or if a problem happens.

Lack of Strong Security Proofs: Even though efficient solutions are known

for different components of card games, most have not been formally proven
secure in a strong security model. In fact, it has been observed in [25] that the
protocols of [33,32] are broken and we describe in the full version of this work
[12] new concrete flaws that we have identified in the protocols proposed in [9]
and [3]. Out of the few protocols that have been suggested, it seems that only [20]
and its follow-up work [7] present a more detailed security proof in a strong,
simulation-based security model. However, in [7] only the general solution based
on enhanced trapdoor permutations has a full security proof (but incurs high
computational and communication costs due to its generality). Bentov et al. [7,
Section 7] argue that, instead of the general protocol, the tailor-made protocol
of Wei and Wang [29,28] can be used as a building block and coupled with their
techniques for dealing with aborts and cash distribution in order to obtain more
efficient poker protocols. However they do not present a proof for this claim,
and not even define the security properties that such tailor-made poker protocol
would have to satisfy in order for the overall solution to be secure. In fact, the
security models used in [29,28] are not formally defined and seem to be rather
weak (judging by the informal descriptions given in these works).

General Requirements for Useful Poker Protocol: The current state of

the art is unsatisfactory as there is no solution that meets all the following criteria
necessary in a deployment in a real world scenario in which money is at stake: (1)
Efficiency: performance that is comparable to tailor-made poker protocols; (2)
Security: a simulation-based, formal proof of security; (3) Penalties: avoid-
ing aborts/misbehavior or penalizing the misbehaving players; (4) Rewards:
securely distributing the rewards to the players.

The works that are closer to achieve these criteria are [20] and [7], which made
fundamental progress towards providing viable solutions to satisfy conditions (3)
and (4). Nevertheless, none of their solutions meet simultaneously conditions (1)
and (2). The solutions in [20] as well as the general solution in [7] do not meet
condition (1), while the solution in [7] using tailor-made protocol improves on
condition (1) but does not address (2) as it lacks a security proof.

1.1 Our Contribution

We present our protocol, Kaleidoscope, named after the homonymous poker themed
movie from the sixties [18]. Given the earlier discussion, our main goal in this
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work is to design a poker protocol that concurrently meets all four criteria above.
In designing our solution we face two main challenges: 1. constructing an ef-
ficient off-chain protocol without sacrificing provable security guarantees as in
previous tailor-made poker protocols, 2. reducing the amount of data stored in
the blockchain, which is a highly constrained resource. In summary, our contri-
butions are: (1) First full-fledged simulation-based security definition for poker
(check full version [12]); (2) First fully-simulatable poker protocol (Section 3),
which provably realizes our security definition; (3) Improved concrete computa-
tional and communication complexities for off-chain card operations (around 10
times better than previous works) and reduced on-chain storage requirements for
the penalties and rewards enforcement mechanism (estimated in Section 4).

As our goal is to provide a strong security guarantee, we first specify a poker
functionality that encompasses the whole game execution, penalizes aborting par-
ties and guarantees the distribution of the rewards. Such modeling of the whole
poker game as an ideal functionality is, to the best of our knowledge, novel. Then
we design a tailor-made protocol that provably realizes such functionality in a
simulation-based security model. Our protocol is designed with both off-chain
and on-chain efficiency in mind. We focus on the case where players act hon-
estly and the on-chain protocol execution is used as a last resort to recover from
malicious actions. In this context, we meet criteria (1) and (2) by designing an
off-chain protocol that is highly efficient while providing compact witnesses to be
posted to the blockchain for claiming rewards or enforcing penalties. Our protocol
represents cards as ciphertexts of a threshold version of the well known El Gamal
cryptosystem as proposed by Barnett and Smart [3] but significantly differs from
their work in the techniques we employ for distributed key generation and card
shuffling. Namely, we use a technique for distributed key generation of threshold
El Gamal public keys that addresses the security issue we found in the protocol
of [3] (described in the full version of this work [12]) without sacrificing efficiency.
Moreover, we significantly improve the efficiency of the card shuffling procedure
by leveraging recent advances in zero-knowledge proofs for correctness of shuf-
fles [4]. This initial protocol itself is unfair, meaning that an adversarial abort
can cause the execution to fail without consequences. In order to meet criteria
(3) and (4), we build on top of the ideas in [20] and [7], financially penalizing an
adversary and rewarding honest players through a stateful smart contract. We
optimize their general rewards/penalties mechanism for the specific case of poker
and define concrete compact witnesses of correct behavior, resulting in a smaller
on-chain footprint.

1.2 Overview and Intuition of Our Protocol

Next we present a more detailed overview of our protocol. Due to the fact that it
is not reasonable to assume that the majority of the players are honest in a poker
game, the secure poker protocol will not be able to guarantee fairness. Instead, we
follow the approach of imposing a financial penalty on the party that interrupts
the correct execution of the protocol, and use this money to compensate the
honest parties. A stateful contract is used to enforce these properties. As it is
highly desirable to decrease the burden on the blockchain as much as possible
(thus improving the efficiency and decreasing the impact on other users), the
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execution of the protocol is performed mostly off-chain and the parties only go
back on-chain for the cash distribution or if some problem happens. When the
protocol goes back on-chain, the parties need to present witnesses to the stateful
contract to validate the state of the game. It is important to decrease the size of
these witnesses that need to be stored by the players, as well as the verification
costs for the stateful contract. In this regard, a key characteristic of poker is
that the future execution is independent from the past when conditioned on a
few variables that keep track of the current status. Hence, if all participants sign
these variables at a checkpoint, then this constitutes a witness witness that can
be delivered to the stateful contract in order to prove the state of the game at this
particular point. Therefore, at the checkpoints, the players can delete all other
previous witnesses, saving space for the players and verification efforts for the
stateful contract. The general overview of the protocol is:

1. Initially the parties lock into the stateful contract functionality an amount of
money equal to the sum of the collateral and the money that they will use for
the bets. A few initialization procedures are also executed during this stage.

2. The players run our novel unfair tailor-made poker protocol off-chain. During
this stage, an aborting adversary can cause the off-chain protocol to fail, so
the players need to record a few witnesses that must be sent to the stateful
contract in the case of problems that require its intervention. All messages are
signed by the senders, and at some checkpoints a few variables that summarize
the status of the game are signed by all players, constituting a compact witness
of correct execution.

3. If the protocol finishes correctly off-chain, then the final payout amounts will
have been signed by all players, and so the parties only come back on-chain
for the cash distribution that is performed by the stateful contract.

4. If some problem happens and a player requests the intervention of the state-
ful contract, each party that does not want to get penalized handles their
respective recorded witnesses to the stateful contract, which is then able to
verify the latest status of the protocol execution and continue the execution
(on-chain) under its mediation. During the mediated execution, it penalizes
any participant that does not follow the protocol rules or abort.

Note that on Step 2, the adopted technique is used in order to decrease the
size of the witnesses that the players need to store after the checkpoint as well
as to reduce the amount of on-chain verification that needs to be performed in
case of intervention (thus reducing the burden on the blockchain, which affects all
cryptocurrency’s users). The safe deposit d that each of the n participants lock
into the contract should be enough to pay the compensation amount q for all the
other parties, i.e., d ≥ q(n− 1). Obviously, the monetary compensation q should
be related to the maximum possible bet amount m at each hand; otherwise the
corrupted parties would have an incentive to abort the protocol if they notice
that one hand will end up badly for them.
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2 Preliminaries

We now define some building blocks used in our protocols. For details about the
Decision Diffie Hellman problem and digital signatures check the full version [12].

Security Model, Adversarial Model and Setup Assumptions: We prove
our protocol secure in the real/ideal simulation paradigm with sequential com-
position. This is an intuitive paradigm that provides strong security guarantees
for the protocols that are proven secure according to it. For more details, check
the full version of this work [12]. We consider malicious adversaries that may de-
viate from the protocol in arbitrary ways. Moreover we consider the static case,
where the adversary is only allowed to corrupt parties before protocol execution
starts and parties remain corrupted (or not) throughout the execution. Our pro-
tocol uses the Random Oracle Model (ROM) [5] and assumes the existence of
a stateful contract functionality FSC (that is described in Section 3 and can be
implemented using blockchain techniques).

Non-Interactice Zero-Knowledge Proofs: We will need a NIZK of knowledge
of a value α ∈ Zp such that x = gα and y = hα given g, x, h, y. For this we use the
Fiat-Shamir transformation on the protocol of Chaum and Pedersen [10], which
we denote by DLEQ(g, x, h, y). We will also need a simpler NIZK of knowledge
of a value α ∈ Zp such that x = gα given g, x. For this we use the Fiat-Shamir
transformation on the protocol of Schnorr [24], which we denote by DLOG(g, x).
We give a full description of these NIZKs in the full version [12].

A central component of our protocol is a zero-knowledge proof that an ordered
set of ElGamal ciphertexts has been obtained by re-randomizing each ciphertext
and permuting the resulting ciphertexts in a previous ordered set (an opera-
tion called a Shuffle). Formally, we want to prove knowledge of a permutation
π ∈ ΣN and randomness r = (r1, . . . , rN ) such that for the vectors of ciphertexts
c = (c1, . . . , cN ) and c′ = (c′1, . . . , c

′
N ) we have c′i = TEG.ReRand(cπ(i), ri). An effi-

cient zero-knowledge argument for correctness of this kind of shuffle has been pro-
posed in [4] and it can be turned into the required zero-knowledge proof through
the Fiat-Shamir heuristic [17,22]. We denote this NIZK by ZKSH(π, r, c, c′) and
refer interested readers to [4] for details on its construction and proof. Further
discussion of this NIZK’s efficiency and distributed generation of setup parame-
ters is presented in the full version [12].

(n, n)-Threshold ElGamal Cryptosystem: A cryptosystem with (t, n)-threshold
allow a group of n parties to jointly generate a public key that is then used to
encrypt plaintext messages in such a way that they can only be recovered from
the ciphertexts if at least t parties cooperate [13]. In our card deck generation
procedure we employ a (n, n)-threshold version of the ElGamal cryptosystem [16]
based on the constructions of [21,14] with a verifiable decryption protocol similar
to the Verifiable Threshold Masking Functions (VTMF) of [3]. The final goal is
to encode card information as Threshold ElGamal ciphertexts as in the VTMF
based construction of [3]. However, we employ different techniques for distributed
key generation in order to address the security issues we have identified in [3].

6



Moreover, we do not require the verifiable masking and verifiable re-masking
(rerandomization) operations because the verification that these ciphertexts are
correctly re-randomized is handled by the zero-knowledge proofs of correctness of
a shuffle [4] presented in the next section. We do use the fact that this scheme is
additively homomorphic (and rerandomizable) and a verifiable decryption proce-
dure, where it is possible to verify that each user is providing a valid decryption
share. We now present the (n, n)-Threshold ElGamal cryptosystem with verifiable
decryption TEG and refer interested readers to [21,14,3] for a full discussion:

– Key Generation TEG.Gen(1λ): Each party Pi generates a random secret-

key share TEG.ski
$← Zp and broadcasts hi = gTEG.ski along with a proof

DLOG(g, hi)
4. Once all n parties have broadcast their public key share hi,

each party Pi verifies the accompanying proofs DLOG(g, hj) (aborting if in-
valid) and then saves all hj , for i 6= j, reconstructing the public key by
computing TEG.pk = h =

∏n
i=1 hi = g

∑n
i=1 TEG.ski .

– Encryption TEG.EncTEG.pk(m, r): The encryption of a message m ∈ G un-
der a public-key TEG.pk with randomness r ∈ Zp is carried out as a regular
ElGamal encryption. Namely, a ciphertext c = (c1 = gr, c2 = hrm) is gener-
ated.

– Re-Randomization TEG.ReRand(c, r′): For fresh randomness r′, a cipher-
text c = (c1, c2) is re-randomized by computing c′ = (gr

′
c1, h

r′c2).
– Verifiable Decryption TEG.DecTEG.sk1,...,TEG.skn(c): Parse c = (c1, c2). Each

party Pi broadcast a decryption share di = cTEG.ski1 and a proof DLEQ(g, hi, c1,
di) showing that they have correctly used their secret-key share TEG.ski. Once
all n parties have broadcast their decryption share di, each party Pi checks
that the DLEQ(g, hj , c1, dj) proofs are correct for all i 6= j (aborting other-
wise) and retrieves the message by computing

c2∏n
i=1 di

=
c2

c
∑n

i=1 TEG.ski
1

=
m · TEG.pkr

gr
∑n

i=1 TEG.ski
=
m
(
g
∑n

i=1 TEG.ski
)r

gr
∑n

i=1 TEG.ski
= m.

Smart Contracts: The concept of smart contracts was introduced by Szabo [27]
and recently popularized by the Ethereum plaftorm [8,31], which implements
smart contracts based on blockchain techniques. Basically, smart contracts allow
a user to specify much richer conditions for transactions to be approved over a
cryptocurrency scheme, mimicking contracts in real life. Besides ensuring that
an amount of money is paid to a certain party who manages to fulfill a given
static set of conditions, smart contracts can also maintain an evolving state that
is taken into consideration when evaluating conditions for contract fulfillment.

In Ethereum, smart contracts can be written using Solidity, a Turing com-
plete programming language specially designed for this pourpose. In order to
avoid denial-of-service attacks, the amount of computation involved in verifying
fulfillment of a contract is bounded by how much a user is willing to pay have the
contract checked. This payment is made by means of an auxiliary cryptocurrency
called gas, which is given to the miners who verify a contract. Basically, more
complex contracts require larger amounts of gas to be verified so that the miners
receive compensation for computationally heavy contract verification.

4 This zero-knowledge proof of the knowledge of the exponent solves the issue in [3]
that was pointed out in the introduction.

7



The use of Ethereum based stateful contracts for rewards/penalties enforce-
ment in secure multiparty computation protocols was first proposed in [7]. Their
approach consists in having parties provide a deposit of a certain number of coins
before protocol execution, later receiving a refund in case they behave honestly.
Our protocol follows the same approach and consists mainly of operations over a
cyclic group (where the Discrete Logarithm and DDH assumptions are believed
to be hard). It has been estimated in [23] that a modular exponentiation over
such a group (computed as a scalar multiplication over an elliptic curve) costs
40000 gas (0.075 US Dollars) while [7] estimated the DLEQ NIZK [10] to cost
1287858 gas (0.30 US Dollars) assuming an exponentiation cost of 300000 gas.
Such estimates provide good evidence that our protocol could be implemented in
a smart contract platform such as Ethereum at a reasonable price.

3 Poker Protocol

For an overview of the poker game and the game formalization using the ideal
functionality Fpoker, check the full version of this work [12].

Our protocol represents cards as ciphertexts of a threshold ElGamal cryp-
tosystem, similarly to the scheme of [3], but employs different techniques for dis-
tributed key generation in order to address the security issues we have identified
in [3] and a highly improved procedure for shuffling cards based on recent ad-
vances in zero-knowledge proofs of shuffle correctness [4]. In order to generate the
representation of a shuffled deck, the parties first run a distributed key generation
algorithm to obtain a public-key (while each holds a share of the secret-key). Next,
they start a shuffling procedure that involves rerandomizing and the randomly
permuting ciphertexts that encrypt the numbers assigned to each card (1 to 52),
which is executed by all parties in a round-robin manner. The parties also provide
to each other proofs that the shuffling was correctly executed, meaning that the
resulting ciphertexts are indeed rerandomized and permuted version of cipher-
texts provided by the previous party, which prevents adversaries from injecting
ciphertexts representing arbitrary cards. When cards are intended to be revealed
publicly, each party broadcasts a decryption share of the ciphertext representing
the card along with a zero-knowledge proof showing its correctness. If a covered
card is to be given to one specific party, each of the other parties sends their
decryption shares and proofs directly to that party through a private channel.
The main efficiency improvement in our protocol is obtained by employing an a
compact zero-knowledge proof of a shuffle introduced in [4] (made non-interactive
by the Fiat-Shamir transform), instead of the cut-and-choose technique employed
by [3]. This proof is compatible with ElGamal ciphertexts and achieves the same
security level of the one in [3] with only a fraction of the computational and
communication complexities.

The main new feature of our protocols is a mechanism for detecting and (finan-
cially) punishing cheaters without requiring the whole protocol to the executed
on chain. This mechanism requires that the parties first deposit of a number of
coins for “collateral”, i.e. they lose these coins if they are detected as cheaters or
abort. The protocol execution has a series of checkpoints where parties cooperate
to generate a witness that the execution was correct up to that point. The witness
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is a signature by all parties agreeing on the current state of the execution. If at
any point a protocol malfunction occurs (a party either does not receive a mes-
sage or receives a invalid message), the party who detected it posts a complaint to
the blockchain along with the last checkpoint witness and the protocol messages
generated after the checkpoint. All the other are required to do the same or face
punishment otherwise. This procedure verifies the current state of the protocol
and then the execution continues in the blockchain until the next checkpoint. Any
misbehavior or abort in this on-chain execution is punished financially. After the
protocol execution reaches the next checkpoint and the parties obtain the corre-
sponding witnesses, the protocol is again executed off-chain.

Smart Contract Functionality FSC: Our poker protocol πPoker makes use of a
stateful contract functionality FSC, described in Figure 1, that models blockchain
transactions used to keep collateral deposits and enforce punishment of players
who misbehave, as well as ensuring that winners get their rewards. It is impor-
tant to emphasize that the FSC functionality can be easily implemented via smart
contracts over a blockchain. More formally, using a public available ledger. More-
over, our construction (for protocol πPoker) requires only simple operations, i.e.,
verification of signatures and discrete logarithm operations over cyclic groups.
The regular operation of our protocol is performed entirely off-chain, without
intervention of the contract. However in the event that any problem happen or
in the case that any participant in the game claim problems in the execution,
any player can publish their agreed status of the game in the chain, via short
witnesses (to be detailed in the protocol description).

Protocol πPoker: The protocol is executed by n players (P1, . . . ,Pn) interacting
with the stateful contract functionality FSC, and is parametrized by the small sb
and big bb blind bets amount, the initial stake t, the maximum bet m per hand,
the security deposit d and a timeout limit τ . In addition to the stateful contract
functionality FSC, the other setup assumption is the random oracle model. We
assume that the parties agree on a generator g of a group G of order p for
the (n, n)-Threshold ElGamal cryptosystem TEG and also on a EUF-CMA secure
digital signature scheme SIG. Moreover, a nonce unique to each protocol execution
and protocol round (e.g. a hash of the public protocol transcript up to the current
round) is implicitly attached to every signed message to avoid replay attacks. The
protocol proceeds in phases as described below:
– Recovery Triggers: Whenever a signature or NIZK proof is received, its

validity is tested. If the test fails, the party proceeds to the recovery phase.
The same happens if a party does not receive an expected message until a
timeout limit τ . These triggers will be omitted henceforth.

– Players Check-in: For i = 1, . . . , n, player Pi proceeds as follows:

1. generates the keys of the signature scheme (SIG.vki,SIG.ski)
$← SIG.Gen(1λ).

2. generates TEG’s key shares by sampling TEG.ski
$← Zp, setting hi =

gTEG.ski and generating a proof DLOG(g, hi).
3. sends (checkin, coins(d + t),SIG.vki, hi,DLOG(g, hi)) to FSC and waits

until getting from FSC the check-in confirmation (checkedin,Pj ,SIG.vkj ,
hj ,DLOG(g, hj)) of each player and the parties’ order (P1, . . . ,Pn) that
is used henceforth in the protocol. If not received until the timeout limit
τ , contact FSC to dropout and reclaim the deposited coins.
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4. verifies each DLOG(g, hj) for j 6= i, reconstructs the initial public key
TEG.pk =

∏n
j=1 hj , record all hj , and initializes a vector balance =

(t, . . . , t), a vector bets = (0, . . . , 0), a counter psb = 1 and a counter
pbb = 2.

– Hand Execution - Shuffle: As the first step in executing a hand, the parties
generate a randomly shuffled deck of closed cards c1, . . . , c52. For i = 1, . . . , n,

Functionality FSC

The functionality is executed with n players P1, . . . ,Pn. It is parametrized by the
small sb and big bb blind bets amount, the initial stake t, the maximum bet m per
hand, the security deposit d, the compensation amount q, a protocol verification
mechanism pv and a timeout limit τ .

Players Check-in: Wait to receive from each player Pi a message
(checkin,Pi, coins(d + t),SIG.vki, hi,DLOG(g, hi)) containing the necessary coins,
its signature verification key, its share of the threshold ElGamal public-key and the
zero-knowledge proof of knowledge of the secret-key’s share. Record the values and
send (checkedin,Pi,SIG.vki, hi,DLOG(g, hi)) to all players. Allow the players to
dropout and reclaim their coins if a player fails to check-in within the timeout limit
τ . Once all check-ins are done, order the players by picking a random permutation
and announce the ordered sequence of players by (P1, . . . ,Pn) to them. Mark all
players as active.

Player Check-out: Upon receiving (checkout, active, balance, σ) from Pi, verify
that σ contains valid signatures by all active players on active and balance and that
active[i] = 0. If everything is correct, for w = balance[i] + d, send (payout, coins(w))
to Pi and mark him as inactive. Send (checkedout, i, w) to the other players.

Recovery: Upon receiving a recovery request (report,Pi,Checkpointi,CurrPhasei)
from Pi containing some checkpoint witnesses and current phase witnesses, send to
each Pj 6= Pi (request,Pi,Checkpointi,CurrPhasei). Upon getting (response,Pj ,
Checkpointj ,CurrPhasej) from some player Pj with checkpoint and phase witnesses
(which are not necessarily relative to the same checkpoint as received from other
players) or an acknowledgement of previous submitted witnesses, forward this infor-
mation to the other parties. Upon getting replies from all players or reaching the
timeout limit τ , determine the current phase by verifying the most recent checkpoint
that has valid witnesses. Verify the last valid point of the protocol execution using
the current phase witnesses and pv. If there exists some Pi who sent misbehaving
messages (together with a signature) in the current phase, then for each Pj 6= Pi

who has not checked-out, send (compensation, coins(d+ q+balance[j] +bets[j])) to
him. Send any leftover coins after the compensation for Pi and halt. Otherwise, me-
diate the execution of the protocol until the next checkpoint. This is done by using
(nxt-stp, phase, round) to request an action from the next party that is supposed
to act and using pv to verify the answer (nxt-stp-rsp,msgphase,round). All messages
are delivered to all players. If during this mediated execution a player misbehaves or
does not answer within the timeout limit τ , penalize him and compensate the others
as above, and halt. Otherwise send (recovered, phase,Checkpoint) to the parties
once the next checkpoint is reached.

Fig. 1. The stateful contract functionality FSC.
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Pi proceeds as follows (w.l.o.g. we assume all parties are active, the adaptation
to the other cases is the straightforward one):
1. If Pi = P1, it sets c0 = (c01, . . . , c

0
52) where c0j = TEG.EncTEG.pk(j, 1).

Otherwise, Pi considers the cards ci−1 = (ci−11 , . . . , ci−152 ) received from
Pi−1. Notice that these initial ciphertexts just encrypt the number of each
card (in increasing order) under deterministic randomness 1, allowing P2

to locally compute the initial set of ciphertexts for verification.
2. Pi samples uniformly at random a permutation π ∈ Σ52 and r = (r1, . . . ,

r52) where rj
$← Zp, and sets cij = TEG.ReRandTEG.pk(ci−1π(j), rj), obtain-

ing a new set ci = (ci1, . . . , c
i
52). Notice that this new set of ciphertexts

representing cards simply contains rerandomized versions of the previous
ciphertexts in a random order.

3. Pi generates a zero-knowledge proof of correctness of shuffle ZKSH(π, r,
ci−1, ci) and broadcasts it with the shuffled deck ci. All other parties
verify this zero-knowledge proof.

After all parties have participated in the shuffling procedure, the shuffled deck
for the current hand is set to be D = cn. All parties sign it by computing
σiD = SIG.SignSIG.sk(DECK− READY,D), broadcasts σiD and verifies all signa-
tures. Checkpoint Witness: The previous checkpoint witness concatenated
with the deck D and corresponding signatures σiD.

– Hand Execution - Small and Big Blinds: After the shuffle is done, all
parties wait for the small blind, i.e. for Ppsb to broadcast a signature σpsbsb =
SIG.SignSIG.skpsb(SB) as well as signatures on vectors balance and bets, where
balance[psb] is decreased by sb coins, bets[psb] is increased by sb coins, while all
other coordinates remain the same. Upon receiving the signatures, each party
Pi broadcasts a signature σisb = SIG.SignSIG.ski(SB) as well as signatures on
balance and bets. All signatures are verified. Proceed analogously for the big
blind. Checkpoint Witness: The previous checkpoint witness with the updated
balance and bets (and signatures on them) concatenated with all signatures
σisb and σibb.

– Hand Execution - Drawing Cards and Private Cards Distribution:
Two private cards pci,1, pci,2 for each active party Pi as well as the community
cards cc1, cc2, cc3, cc4, cc5 are drawn from D according to the rules of poker.
For i = 1, . . . , n , Pi proceeds as follows to open cards pcj,1, pcj,2 towards Pj
for j = 1, . . . , n and to obtain its own private cards (here all parties act in
parallel):
1. Pi computes its decryption shares for pcj,1, pcj,2 by parsing pcj,k as

(cj,k,1, cj,k,2) and computing dj,k,i = cTEG.skij,k,1 and a NIZK DLEQ(g, hi, cj,k,1,
dj,k,i) for k ∈ {1, 2}. Pi sends the decryption shares dj,1,i, dj,2,i along with
their corresponding proofs to Pj through a private channel.

2. Once it has received all di,1,j , di,2,j and corresponding DLEQ proofs from
the other parties, Pi checks that the proofs are valid. Finally, Pi learns
its private cards by computing pc′i,k =

ci,k,2∏n
i=1 di,k,j

for k ∈ {1, 2}.
3. Pi broadcasts σipc = SIG.SignSIG.ski(PRIVATE− CARDS) after retrieving its

private cards. Remember the signature implicitly includes a nonce unique
to this protocol execution and specific round. Once signatures σjpc from
all parties have been received, verify them.
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Checkpoint Witness: The previous checkpoint witness, except for the signa-
tures σisb and σibb, concatenated with all σipc.

– Hand Execution - Main Flow: After cards are drawn and private cards
are distributed, all parties proceed to the main flow of playing a hand, where
a number of community cards will be opened and a number of betting rounds
will be played, both according to the community card opening and betting
round procedures. All parties continue the main flow by proceeding as follows:

• Execute a betting round starting with the closest active successor of Ppbb.
• Execute a community card opening procedure for flop cards cc1, cc2, cc3.
• Execute a betting round starting with the closest active successor of
Ppsb−1.

• Execute a community card opening procedure for turn card cc4.
• Execute a betting round starting with the closest active successor of
Ppsb−1.

• Execute a community card opening procedure for river card cc5.
• Execute a betting round starting with the closest active successor of
Ppsb−1.

• Proceed to showdown starting with the last player who increased the bet
in the last round, if there is one; otherwise, the closest active successor of
Ppsb−1.

– Community Card Opening: In the steps of πPoker where a community
card cc ∈ {cc1, cc2, cc3, cc4, cc5} has to be opened, party Pi, for i = 1, . . . , n,
proceeds as follows:

1. Pi parses cc = (cc1, cc2) and broadcasts its decryption shares di = ccTEG.ski1

along with a NIZK DLEQ(g, hi, cc1, di).
2. After all decryption shares dj and corresponding DLEQ NIZKs are re-

ceived from all parties, Pi verifies if all NIZKs are valid. Pi opens cc by
computing cc2∏n

i=1 dj
.

3. After opening cc, Pi broadcasts σicc = SIG.SignSIG.sk(COMMUNITY− OPEN, cc)
in order to communicate it has successfully opened cc. Once all signatures
σjcc from other parties have been received, Pi verifies that they are all
valid.

Checkpoint Witness: The previous one together with all signatures σicc.
– Betting Round: In the steps of πPoker that require a betting round start-

ing from party Ps, each party Pi communicates its betting action actioni ∈
{fold,call, (raise, r),all-in,check} (as defined in Fpoker) in a round robin
manner starting from Ps and following the order (P1, . . . ,Pn) received from
FSC, proceeding as follows until the conditions specified in Fpoker for finishing
the betting round are met:

• When it is Pi’s turn to state its bet, Pi updates vectors bets and balance
according to its action actioni, i.e. it increases (resp. decreases) bets[i]
(resp. balance[i]) by the amount of coins required by actioni as defined
in Fpoker. Pi generates a signature σibet = SIG.SignSIG.ski(actioni, bets[i],
balance[i]) and broadcasts (actioni, bets[i], balance[i], σ

i
bet).

• Upon receiving (actionj , bets[j], balance[j], σ
j
bet) from party Pj for j 6= i,

Pi checks the validity of σjbet. Next, Pi verifies that bets[j] and balance[j]
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are consistent with actionj according to the rules defined in Fpoker. If not,
Pi proceeds to the recovery phase. If both checks succeed, Pi updates its
local copy of bets and balance with the new values of bets[j] and balance[j],
and proceeds in the betting round.

When the conditions for ending the betting round specified in Fpoker are met,
each party Pi broadcasts a signature σibetstate = SIG.SignSIG.ski(bets, balance)
on its local copy of vectors bets and balance. Pi waits until all signatures
σjbetstate are received from every other party Pj for j 6= i and verifies that
they are valid signatures on their local vectors bets and balance (verifying
that all parties agree on the final bets and balance). Checkpoint Witness: The
previous checkpoint witness with the updated vectors bets and balance, along
with all signatures σibetstate on the updated vectors.

– Showdown: The parties proceed in a round-robin way. If a party Pi wishes
to open its private cards pci,1, pci,2 during showdown, Pi broadcasts the de-
cryption shares di,1,j , di,2,j along with their corresponding DLEQ proofs, for
j = 1, . . . , n. For every party Pi who opens its private cards during showdown,
the other parties Pj decrypt pci,1, pci,2 by following the same procedure used
for reconstructing their own private cards. If decryption fails, Pj proceed to
the recovery phase. If a party Pi wishes to muck during showdown, it broad-
casts a signature σimuck = SIG.SignSIG.ski(MUCK), the other parties verify the
signature. Once all parties have either opened or mucked, the parties proceed
to the pot distribution.

– Pot Distribution: Each party Pi uses the opened cards, chronological or-
der of folded/mucked hands and current vectors balance and bets to locally
compute the updated balance for all parties according to the rules of poker.
It also zeros out bets. Pi broadcast signatures on balance and bets. Upon re-
ceiving these values from each party Pj , Pi verifies that it is a valid signature
on its own local updated vectors balance and bets. A party Pi who wishes
to continue playing broadcasts a signature σicont = SIG.SignSIG.ski(CONTINUE).
A party Pi who no longer wishes to play or who has balance[i] = 0 broad-
casts a signature σichko = SIG.SignSIG.skj (CHECKOUT). Each party Pi checks
that all other parties’ signatures are valid. For all parties Pj who choose to
check-out, mark party Pj as inactive. After determining which parties re-
main active and which check out, each party Pi constructs a vector active
such that active[j] = 1 if party Pj is active in the next hand or active[j] = 0
if Pj is checking out. Pi broadcasts a signature σiact = SIG.SignSIG.ski(active).

Pi checks that signatures σjact by all other parties Pj are valid signatures on
the same active vector, otherwise it proceeds to the recovery phase. If there
were check-outs, update the public key as TEG.pk =

∏n
j=1 s.t. j is active hj . In-

crement psb and pbb using the order among the active players. A signature
on these values are also generated by each party and checked by the others.
Checkpoint Witness: Vectors balance, bets and active, counters psb and pbb,
as well as all signatures on these values.

– Player Check-out: If Pi was marked as checking out in the pot distribu-
tion phase, it sends a message (checkout, active, balance, σ) to FSC, where
σ contains all signatures on active and balance, waits for confirmation from
FSC and stops execution.
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– Recovery Request: If a party Pi enters the recovery phase at any step
of a given phase, it sends a message (report,Pi,Checkpointi,CurrPhasei) to
FSC, where Checkpointi is the checkpoint witness from the previous phase and
CurrPhasei is the transcript of the current phase so far (i.e. only the messages
that received and sent by Pi after the last checkpoint).

– Responding to a Recovery Request: Upon receiving a message (request,
Pi,Checkpointi,CurrPhasei) from FSC containing the checkpoint witness and
current phase transcript included in the report message of Pi, every other
party Pj sends a message (response,Pj ,Checkpointj ,CurrPhasej) to FSC

containing their own most recent checkpoint witness and transcript of the
current phase if they are different from the ones already submitted by other
parties. Otherwise, it simply acknowledges the one that is equal. Once all par-
ties have responded to the recovery request, all parties have learned each other
checkpoint witnesses and the transcripts of the current phase. For i = 1, . . . , n,
party Pi proceeds as follows:

• Upon receiving the message (nxt-stp, phase, round) from FSC, Pi com-
putes its message msgphase,round for the round specified by round of the
phase specified by phase and sends (nxt-stp-rsp,msgphase,round) to FSC

following the protocol.
• Upon receiving (recovered, phase,Checkpoint) from FSC, Pi records the

checkpoint witness of the phase specified by phase and returns to the regu-
lar execution of next phase as described in the protocol by communicating
directly to the other parties.

The security of Protocol πPoker is captured in the following theorem whose
proof is presented in the full version of this work [12] due to space limitations.

Theorem 1. Assuming that the DDH problem is hard and that the digital signa-
ture scheme SIG is EUF-CMA secure, protocol πPoker securely computes Fpoker in
the FSC-hybrid, random oracle model in the presence of malicious static adver-
saries.

4 Concrete Complexity Analysis

In this section we analyze the concrete communication and computational com-
plexities of πPoker. We estimate (off-chain) communication and computational
complexities for the case where no user cheats (thus never triggering the recovery
phase). The exact cost of performing recovery will depend on the exact point of
the protocol where the recovery request happened, since the players are required
to post their protocol messages generated in each round after the latest checkpoint
witness. Nevertheless, we discuss why our on-chain space complexity is generally
low given that we explicitly define compact witnesses for intermediate step of the
protocol (even inside poker rounds). On the other hand, previous works in [20]
and [7] only mention (but not define) intermediate witnesses for each round of
the poker game. Moreover, we exclude the cost of generating and sending the
messages between the parties and FSC, since these messages are basically trans-
actions being posted in the blockchain and their size and generation cost may
vary depending on the concrete implementation.
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Estimating Complexity: We estimate computational complexity in terms of
the number of exponentiations that each party has to perform in each phase of the
protocol. On the other hand, we estimate communication complexity in terms of
the total number of group (i.e. G) elements and ring (i.e. Zp) elements transferred
by all parties in each phase of the protocol. Most of the messages exchanged in the
protocol are broadcast to all parties5. However, during private cards distribution,
decryption shares for each card are sent directly to its owner through a private
channel. We denote messages transmitted through private channels by [private]
and messages broadcast through public channels by [broadcast]. Messages that
are not explicitly marked are assumed to be broadcast by public channels. Both
the Betting Round and Showdown phases have complexities that fully depend
on the behavior of each player in the game of poker and other conditions such
as the stake of the game. For example, a user can choose to keep raising his bet
in a Betting Round and users can choose whether to show their cards or muck
in Showdown. Those choices are perfectly honest and permitted in the game but
they result in different final complexities for these phases of πPoker. In the case
of the Betting Round phase, we estimate the complexity for the case where all
players speak once, which can be easily used to compute the complexity in cases
where each player speaks multiple times. In the case of the Showdown phase, we
estimate the complexity for the worst case (in terms of complexity), where all
players choose to show their cards.

Instantiating the Building Blocks: In this analysis we instantiate ZKSH
(NIZK of correctness of a shuffle) with parameters k = 4 and l = 13, which results
in 208 exponentiations for the prover and 208 exponentiations for the verifier, with
a proof size of 44 elements of G and 65 elements of Zp. Notice that this estima-
tion is actually an upper bound for concrete communication complexity, since
it pertains to the interactive version of ZKSH, which is significantly improved
in terms of concrete communication complexity after applying the Fiat-Shamir
heuristic. We instantiate the signature scheme SIG with the ECDSA scheme [19],
where a public key consists of a elliptic curve point (that we count as an element
of G) and a signature consists of two scalars (we count as elements of Zp). The
ECDSA scheme requires one elliptic curve point multiplication by a scalar for
generating a key pair, one for signing and two for signature verification (without
optimizations), which we count as group exponentiations since πPoker is written in
terms of groups with multiplicative notation. The concrete communication and
computational complexities of are presented in Table 1.

On-chain Space Complexity: Considering that players act honestly through-
out the protocol, information is only stored in the blockchain when a player wishes
to redeem its rewards. In this case, the player must post a witness showing that
all players agree that the protocol was correctly executed. This witness consists
of a simple digital signature. In case a malicious player does cheat and an hon-
est player triggers the recovery mechanism, players are required to post to the
blockchain their latest checkpoint witness (if they disagree with the witnesses

5 We remark that, in our scenario, broadcasts can achieved by having parties commu-
nicate directly with each other due to the low number of parties (typically n ≤ 10).
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posted by other players) and the protocol messages generated after that witness.
Notice that this checkpoint witness is also a simple digital signature and that the
bulk of the data posted on the blockchain actually depends on which phase of the
protocol is currently being executed. For example, if recovery is triggered during
the Main Flow phase of Hand Execution, only the latest checkpoint witness and
short messages required in that phase would have to be posted to the blockchain,
excluding the long messages previously sent in the Shuffle and Drawing Cards
phase. On the other hand, previous protocols in [20] and [7] only mention that
intermediate witnesses could be generated after a full round of poker, incurring
in a much higher overhead in terms of blockchain storage when recovery happens.
Moreover, such witnesses are not explicitly defined in [20] and [7].

Comparison with Previous Protocols: While we present estimated computa-
tional and communication complexities for each phase of a complete poker game,
previous works only focus on individual card operations [29,28,25,33,32,9,3], mak-
ing it hard to provide direct comparisons to our results. In order to provide a
meaningful comparison, we will focus on the card shuffling phase, which is the
main bottleneck of poker protocols. Considering a deck of 52 cards (necessary
for a poker game) and a security parameter k = 40 for the cut-and-choose step
(which is the lowest security parameter used for this kind of technique in modern
cryptography), the protocol of [29] (used as a building block in [7]) requires 2120n
exponentiations per player in the Shuffle phase where there are n players. With
the same parameters, the Shuffle phase of the protocol proposed in [3] requires
6240(n − 1) + 8320 exponentiations, where n is the number of players. On the
other hand, our protocol only requires 209n+ 104 exponentiations per player as
detailed in Table 1, resulting in improvements of an order of (at least) 10 times.

Phase
Exponentiations

(Per Player)
Communication (Total)
G Zp

Players Check-in 2n+ 1 2n 2n

Hand Execution - Shuffle 209n+ 104 148n 67n

Hand Execution - Blinds 12n 0 24n

Hand Execution - Drawing/
Private Cards Distribution

16n− 13 2(n2 − n) [private]
4(n2 − n) [private],

2n [broadcast]

Hand Execution - Main Flow 52n− 20 5n 28n

Showdown (Worst Case) 8(n− 1)2 2n2 4n2

Pot Distribution 2n 0 4n

Total 8n2 + 271n+ 82
2n2 + 155n
[broadcast],

2(n2 − n) [private]

4n2 + 127n
[broadcast],

4(n2 − n) [private]

Table 1. Concrete communication and computational complexities of πPoker in terms
of number of exponentiations executed per player and number of elements of G and Zp

transmitted by all players in total for each phase with n players. During private cards
distribution, some messages are sent through a private channel, which we denote by
[private]. All the other messages in the protocol are broadcast through public channels,
which we denote by [broadcast]. Messages that are not explicitly marked are assumed
to be broadcast by public channels.
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5 Conclusion

We introduced the first specific purpose protocol for secure poker with payment
distribution and penalty enforcement with fully-simulatable security. In order to
argue about our protocol’s security, we introduced the first formal simulation
based security notions for such protocols, overlooked by previous works. More-
over, we identified concrete flaws in previously proposed protocols [9,3], show-
casing the need for formal security definitions and proofs. Our work improves
on previous heuristic approaches for constructing poker protocols and provides
a more efficient alternative to general results that provide payment distribution
and penalty enforcement for general MPC protocols, where generality comes at
the cost of efficiency.
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9. Castellà-Roca, J., Sebé, F., Domingo-Ferrer, J.: Dropout-tolerant ttp-free mental
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