
Practically Efficient Secure Distributed
Exponentiation without Bit-Decomposition

Abdelrahaman Aly, Aysajan Abidin, and Svetla Nikova

imec-COSIC KU Leuven,
Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium

{firstname.lastname}@esat.kuleuven.be

Abstract. Bit-decomposition is a powerful tool which can be used to
design constant round protocols for bit-oriented multiparty computation
(MPC) problems, such as comparison and Hamming weight computa-
tion. However, protocols that involve bit-decomposition are expensive in
terms of performance. In this paper, we introduce a set of protocols for
distributed exponentiation without bit-decomposition. We improve upon
the current state-of-the-art by Ning and Xu [1,2], in terms of round and
multiplicative complexity. We consider different cases where the inputs
are either private or public and present privacy-preserving protocols for
each case. Our protocols offer perfect security against passive and active
adversaries and have constant multiplicative and round complexity, for
any fixed number of parties. Furthermore, we showcase how these primi-
tives can be used, for instance, to perform secure distributed decryption
for some public key schemes, that are based on modular exponentiation.

1 Introduction

The use of Internet connected devices has become essential in people’s daily lives.
However, serious privacy concerns have been raised as more and more sensitive
private information is transmitted (over the Internet), processed and stored in
third party databases or the cloud. This movement of information has been
fostered by decades of research in cryptography, helping to develop tools and
techniques to perform computational tasks in a privacy-friendly manner. Secure
multiparty computation (MPC) is one such tool that allows the computation of
functions on private inputs by mutually non-trusted parties. The initial tech-
niques and problems proposed in the seventies and eighties have indeed evolved
into a growing field with not only theoretical results but into the implementation
of practical applications (e.g., [3,4,5]). More recently, thanks to the advent of
frameworks such as SPDZ [6] or MASCOT [7], it is possible to implement any
functionality in a relatively efficient fashion.

One of the basic and commonplace problems in applied MPC is distributed
modular exponentiation. Classical approaches for distributed modular exponen-
tiation over arithmetic circuits rely on bit-decomposition, which was first pro-
posed by Damg̊ard et al. in [8]. However, bit-decomposition is an expensive
procedure in terms of performance. Recently, Ning and Xu proposed protocols

for modular reduction and exponentiation without bit-decomposition in [1,2].
In this paper, we build upon [1,2], and present mechanisms to compute modu-
lar exponentiation in a simpler and practically efficient fashion. Our approach
does not require exhaustive parallelization and has a constant round complex-
ity. Finally, we show how our approach can be used in, for example, distributed
decryption of public key protocols.

Bit-decomposition. The process of decomposing secretly held finite field ele-
ments into their bit-representations for exponentiation was originally introduced
by Damg̊ard et al. [8]. The same decomposition mechanism was then used not
only to construct secure exponentiation mechanisms, but also as a basic building
block for (in)equality tests and modular operations [9]. Although highly prac-
tical, the cost of operating bitwise on arithmetic circuits cannot be dismissed.
An extended polynomial representation, such as a bit extension, implies a large
bound on the amount of work i.e. multiplication performed.

It can be argued that in many cases involving bit-decomposition, the opera-
tions are not co-dependent and hence can be parallelized (low round complexity).
Even if we put aside the increase in transmission costs due to increased number
of shares to be transmitted, the fact that the total amount of work (amount of
multiplications) depends on the input size, cannot be addressed only by paral-
lelization. For example, 4096 concurrent multiplications would require a batching
structure composed of several threads to compute the multiplications not only in
a single round, but in an equivalent amount of CPU time. This would necessitate
the need for developing practically efficient mechanisms for modular operations,
such as exponentiation, without relying on bit-decomposition.

Related Work. As previously mentioned, initial alternatives focus on bit-
decomposition. Namely, the work introduced by Damg̊ard et al. [8], that offered
security against both active and passive adversaries for all three cases that we
consider in this paper. However, for the case concerning the publicly available
exponent, certain adaptations are needed to achieve security against malicious
adversaries. It also requires the production of additional randomness r and ra,
where a is the public exponent, which would require additional communication
rounds. Our protocol gets rid of such requirements and offers security against
malicious adversaries.

The other two exponentiation protocols introduced in [8] make use of bit-
decomposition, which has the aforementioned performance drawbacks. None of
our protocols require bitwise operations, and optimizes the process in a simple
straight-forward fashion. The main advantage of our approach is the reduction
of non-linear operations which are, in general terms, expensive [10], as well as
the decoupling the protocol complexity from the input size.

Recently, Ning and Xu [1,2], introduced several protocols aimed to remove
the necessity of decomposing secret inputs into their bit representations. They
achieve this by using a series of constructions based on bitwise operations over
some randomness. Their work achieves constant round, with a linear asymptotic

2

bound on the amount of work (on the size of input). We not only simplify their
process, but also reduce round complexity making use of constant amount of
multiplications.

On a similar line, Grassi et al. introduced a mechanism to perform secure
exponentiation over a publicly available base to a secret shared exponent in [11].
Their protocol was used in the context of the implementation of symmetric key
primitives. Their protocol, however, was designed such that the output of the
protocol is disclosed to the computational parties every time. Our protocols, on
the other hand, allow the parties to keep the output secret and produce the
output only when needed.

Note that, although the input size is not a factor in any of our protocols’
complexity, this is not the case for the number of parties performing the compu-
tation. However, it is safe to assume this number remains unaltered throughout
common practical applications giving room to specialized frameworks for a con-
stant number of parties; see, e.g., [3,5,12,13]. This is not the case for the input
size, given their variability in practical applications.

Our Contribution. We propose distributed modular exponentiation protocols
without bit-decomposition, for the following configurations:

- Public Base: the base is public and the exponent is secret;
- Public Exponent: the base is private and the exponent is public; and
- Private Exponentiation: both the base and the exponent are privately

held.

Note that, since the output of these functionalities would remain secret, our
protocols can be used as sub-routines for more complex functionalities. This is
indeed congruent with the literature on this topic e.g., [1,2], without prejudice to
its security under composition [14]. Our protocols outperform their most recent
counterparts in terms of round complexity and amount of work, which in our
case are both constant for a fixed number of parties. Table 1 contrasts our results
with the results by Ning and Xu [2]. Note that in this context l stands for the
bit-size of the input and n for the number of parties.

As an application, we explore the case where decryption of common public
key encryption schemes (such as RSA [15] and El-Gammal [16]) performed over
MPC. The scenario that we consider is as follows: a user encrypts a message
using a public key pk, corresponding to a private key sk, such that pk is publicly
available and sk is secretly shared among several parties. An MPC decryption
would not only facilitate what is commonly called threshold decryption, a pow-
erful technique used for example in voting systems [17], but also transforms any
ciphertext into secretly held shares of the message.

3

Table 1. Round/Multiplication complexity for modular exponentiation without bit-
decomposition.

Protocol Semi-Honest [2] Semi-Honest(this work)

Protocol Rounds Multiplications Rounds Multiplications

exp([b], a) 5 33 (10 · n + 3) 8 8 (4 + 2 · blog(n)c)
exp(b, [a]) N/A N/A 3 3 (1 + blog(n)c)
exp([b], [a]) 20 157 · l + 7 · l + 7 + 5 13 13 (7 + 3 · blog(n)c)

Outline. This work is organized as follows: We introduce the necessary back-
ground material in Section 2. We then give a detailed description of our results
on exponentiation in Section 3. We provide an overview on the usage of our
protocols for public key decryption in Section 4. Section 5 concludes the paper.

2 Preliminaries

2.1 Notation

We follow the square notation introduced in [18]. Let [x] denote a secretly shared
input x. Let P be the set of n parties, Pi be the i-th party for i = 1, · · · , n
and q be a large prime number. Let Z∗q be the multiplicative group Zq − {0}.
To distinguish secretly shared elements of Zq from that of Z∗q , we use [x]q for
x ∈ Zq and [x]q∗ for x ∈ Z∗q . Additionally, consider p = q − 1, such that we can
define Zp and Z∗p accordingly. Furthermore, our protocols make use of the infix
notation, to make calls to the secure functionality e.g. [z]← [x] + [y]. Note that
in practice, basic operations are carried out by the underlying MPC protocol
e.g., [13,19,20,6,7]. Our exponentiation protocols do not make direct use of any
specific representation for signed values. However, other protocols such as the
modular operation used in later sections may need such support definitions.

To denote a shared value x we use [x] ← Share(x). To denote open or
reconstruct the shared value we use x← Open([x]). Note that for simplicity, we
assume, in this work, that the inputs have been secretly shared using Shamir’s
Secret Sharing Scheme [21] which uses public constants αi (coefficients of a
Lagrange polynomial) in the reconstruction of the secret. To be specific, x ←
Open([x]) is computed as x =

∑|P |
i=1 αi · xi, where xi is the i-th party’s share.

Fan-in multiplication of shared secrets resulting in the sharing of their product
[c] ← Product([a], [b]). Similarly inversion (in the considered finite field) of a
shared value resulting in the sharing of the inverse value [x−1]← Inverse([x]).

2.2 Complexity Metrics

Typically, complexity is measured by the number of non-concurrent operations
executed by the parties in charge of executing the functionality. We follow the
relevant literature in the field, and differentiate between the operations that re-
quire any level of communication exchange in between the participants and those

4

operations that can be executed locally. Indeed, following [10], we consider that
the linear operations such as additions or scalar multiplications to be of negli-
gible cost, given they do not require any message exchange and hence, are free.
On the other hand, non-linear operations, such as multiplications, require such
exchanges and are substantially more expensive. Furthermore, we define round
complexity as the number of sequential (non-parallelizable) invocations to func-
tionality that requires at least one communication round i.e. the multiplicative
depth of an arithmetic circuit. However, this is not the only metric that we use,
the number of multiplications and equivalent operations, also referred to as the
amount of work holds great importance as well, given that it would determine
the volume of the information exchanged.

2.3 Secure Multiparty Computation

Secure multi-party computation lets us compute any functionality that can be
composed into either an arithmetic or boolean circuit, among any number of
mutually distrustful parties. Moreover, notable results known as BGW [19] and
CCD [22] prove that any functionality can be calculated with perfect security,
as long as a majority of players remained honest for the semi-honest case, and
two thirds for the malicious case, thanks to the use of Verifiable Secret Sharing
(VSS).

More recent results have focus on offering security against malicious adver-
saries in the presence of dishonest majorities e.g., [6,20,7], at the cost of an offline
phase that provides cryptographic security. Furthermore, sub-protocols imple-
menting functions can be securely composed thanks to their Universal Com-
posability (UC) security [14]. Indeed, we make use of well known mechanisms
designed to work on MPC settings, namely the following:

Secure comparison. We specifically refer to equality and inequality tests for inte-
ger ring elements. Several protocols for secure comparison have been introduced
by the literature, designed under the same model used by this paper achieving
different security guarantees i.e. perfect security [8] or statistical security [23,24].
Such functionality can be further defined as follows:

[z]← Equal([x], [y]) ([x]
?
= [y]) where [z] ∈ {0, 1}, (1)

[z]← Compare([y], [y]) ([x]
?
< [y]) where [z] ∈ {0, 1}. (2)

Randomization. Protocols for efficient random number generation have been in-
troduced by [25]. This work, commonly referred to as PRNG (Pseudo-Random
Number Generation) introduced techniques to generate secret shared random-
ness at a negligible cost i.e., no communication cost associated to it. Furthermore
all randomness can be easily pre-computed before the execution of any of our
protocols. This includes the generation of the multiplication triples (see [6,7])
and any other process randomness needed across the underlying MPC protocols
and our results.

5

Security. Security of MPC is typically defined following the Universal Compos-
ability (UC) framework [14,26], which is a general framework allowing arbitrary
MPC protocols to be represented and analyzed. Informally speaking, in the UC
framework, for every real protocol an ideal functionality is first defined that may
include a trusted third party which securely interacts with all involved players,
performs computations on the players’ private inputs and distributes the output
to the parties. That is, for every real world protocol an ideal functionality F

must be defined, which takes all the inputs from the players and performs the
desired computation in an ideal way. Then the real protocol is said to be secure if
whatever can be done in the real world by an adversary can also be simulated in
the ideal world by an (ideal-world) simulator. Hence, UC security of a protocol
ensures that the security provided by the ideal functionality is not stronger than
that provided by the real protocol. This is done by introducing an environment
Z. The environment Z chooses all the inputs to every involved party, receives all
outputs, and communicates freely with the adversary A throughout the entire
protocol run. Basically, in the ideal case, adversary A is replaced by a simulator
S, which internally simulates A and acts as a buffer between Z and F.

The ideal functionality for MPC is modeled by arithmetic blackbox (ABB)
[18]. ABB allows the players (or users) to provide input/output values that are
to be secret shared and that performs arithmetic operations on the values of
the secret shares over a finite field, say Zq. It can be thought of as a generic
procedure for secure computation. Any party (or parties) can send its (or their)
private input to ABB and ask it to compute any computable function. The
computation results are stored in the internal state of ABB so that they can
be used in the subsequent computations. Stored values can only be made public
if majority of the players agree on it. ABB provides us with abstraction of
the details of MPC operations and of secret sharing. The ABB functionality is
defined as follows.

Definition 1 (ABB Functionality FABB). The ideal functionality FABB for
MPC, where ν ∈ {q, q − 1}, is defined as follows:

– Input: Receive a value x ∈ Zν or x from some party and store x.
– Share(x): Create a share [x] of x.
– Product([x], [y]): Compute z = x · y and store [z].
– Compare([x], [y]): Compare x and y, and return 0 if x < y and 1 otherwise.
– Equal([x], [y]): Check if x = y; return 1 if x = y, 0 otherwise.

– sRand(Zν): Sample r
R←− Zν and store [r].

– Open([x]): Send the value x to all players.

Addition and scalar multiplication are denoted by their corresponding conven-
tional symbols + and ·.

Definition 2 (UC-security [14]). A real protocol π is UC-secure if, for all
adversaries A, there exists a simulator S for which no environment Z can dis-
tinguish with a non-negligible probability if it is interacting with A and players
running π or S and players using the ideal functionality F.

6

As we shall see later, our protocols for exponentiation offer perfect security
against active and passive adversaries.

2.4 Exponentiation based on Bit-Decomposition

Currently, the literature offers mechanisms to solve exponentiation, using bit-
wise decomposition techniques. Initially, work introduced by Damg̊ard et al. [8],
showed how to achieve this with perfect security. However, as mentioned before,
the cost related to the bit-decomposition of the inputs is relatively high, and
has been seen as restrictive by other works in the field e.g. [2,24]. For instance,
bit-decomposition protocols, such as the one described by [8], require bit-wise
addition. A naive implementation of a carry for the addition would require at
least as many sequential multiplications as the bit-wise input size. The costs
related to the random bit generation have to be considered as well. In this section,
we give a more detailed view and explanation on the Damg̊ard et al. methods for
exponentiation. The protocols follow the same notation as the rest of the paper.
Furthermore, we assume the existence of the function [x]bits ← bd([x]), which
receives a secret shared input [x] and return its shared bit-decomposition [x]bits.

Exponentiation protocol to a public value: This is achieved by executing
a fan-in multiplication in Zq as expressed by the following equation

[ba]← Productai=1([b]). (3)

This naive approach provides perfect security for both passive and malicious
cases. However, the process has its own drawback in complexity terms, given that
it directly depends on a i.e. O(a), in case no optimized implementation of the
fan-in operation is used. Damg̊ard et al. [8] introduced a more efficient procedure
that can be executed in constant time. Protocol 1 shows its implementation.

Protocol 1: Secure Damg̊ard et al. exp([b],a) operation to a public
exponent

Input: secretly shared base [b] in Zq∗ , publicly available exponent a in Zp
Output: secret shared [ba]

1 [r], [ra]← sRand(Z∗q , a);
2 [c]← Product([b], [r]);
3 c← Open([c]);
4 [ba]← (ca) · Inverse([ra]);

As its naive counterpart, it provides security against passive adversaries, but
requires extra processing for the active case. Basically, during the generation of
[r] and [ra] an adversary could maliciously select the share corresponding to [ra].
We invite the reader to revise [8] to explore the malicious case.

7

Exponentiation protocol with a public base: To achieve this, the authors
propose securely bit-decomposing the inputs (bd). In this case, the protocol de-
composes the secretly shared exponent into bits, and uses fan-in multiplications
of a specially crafted term to achieve the desired behavior. On complexity, this
process delivers the results in a constant round complexity for fixed input sizes,
but it linearly grows with the input size. Protocol 2 shows its implementation.

Protocol 2: Secure exp(b,[a]) operation on a public base

Input: publicly available base b in Zq,secretly shared exponent [a] in Zp, size of
the inputs in bits l

Output: secret shared [ba]
1 [a]bits ← bd([a]); // ([a0], [a1], ..., [al−1]) s.t. ai ∈ {0, 1}
2 [ba]← Productl−1

i=0([ai] · b2
i

+ [1]− [ai]);

Privacy preserving exponentiation: This case considers that both, base and
exponent are secretly held, can be achieved in a similar fashion. In this case, a
secure exp([b],a) should be used instead of the plain text base exponentiation
step, as shown by Protocol 3.

On extending exponentiation for Zq: Damg̊ard et al [8] presented an easy
to implement technique to avoid revealing the secret [b] when it is equal to 0,
and hence extending this functionality to Zq instead of Z∗q . This is achieved

by simply adding the result of the following equality test [b]
?
= [0] to [b] such

that b + ([b]
?
= [0]), and then subtracting the equality test at the end of the

computation. This can be achieved in log(l) rounds. This way the secret [b] is
not disclosed. The same can be applied to Protocol 1 and Protocol 3, to preserve
the privacy of the inputs after being multiplicatively masked, hence we do not
revisit this issue.

3 Secure Distributed Exponentiation

In this section, we explore different protocols for exponentiation based on pub-
licly available and privately held inputs of any set of parties. Note that the
protocols are designed to work for the case when the base b is secret shared in
Zq and its exponent a in Z∗p.

3.1 Public Base Exponentiation

Intuitively, this is the case where a publicly available base b is raised to a secretly
shared exponent [a]. Its ideal functionality is defined as follows:

8

Protocol 3: Secure exp([b],[a]) operation

Input: secretly shared base [b] in Zq∗ ,secretly shared exponent [a] in Zp, size of
the inputs in bits l

Output: secret shared [ba]
1 [a]bits ← bd([a]); // ([a0], [a1], ..., [al−1]) s.t. ai ∈ {0, 1}
2 [ba]← Productl−1

i=0(Product([ai], exp([b], 2i)) + [1]− [ai]);

Definition 3. Let base b and exponent a be elements of Zq and Z∗p, respectively,
and let b be publicly available and a be privately preserved that is hosted by any
subset of honest parties. The ideal functionality Fexp(b,[a]) takes b and the secret
[a]p∗ as input and returns [ba] as output.

Protocol 4 shows how this functionality can be achieved, for the semi-honest
case. We further upgrade the construction in Protocol 4 to provide perfect se-
curity against active adversaries later in this section. Note that, without loss
of generality, we assume the inputs have been secretly shared, using Shamir’s
scheme [21], where αi are the publicly available interpolation coefficients as it
was previously described.

Protocol 4: Secure exp(b,[a]) operation with public base

Input: publicly available base b in Zq, secret shared exponent [a] in Zp∗
Output: secret shared [ba]

1 each party Pi locally computes ci ← bαi·ai ;
2 [ci]q ← Share(ci);

3 [ba]q ← Product
|P |
i=1([ci]q);

Protocol 4 returns b[a]p∗ by directly reconstructing the shares of [a]p∗ on the
exponent. This requires every party Pi to multiply locally its share ai by its
corresponding αi constant. Let us analyze Shamir’s scheme, for instance: parties
should make use of the Lagrange interpolation multipliers (which are publicly
held constants). Note that for the case of additive secret sharing, it suffices for the
parties to apply the share of the exponent. Parties then proceed to calculated ci
locally, secret share it and multiply the resulting shares, finally obtaining b

[a]
p∗ as a

result. This is a standard and common technique used for threshold decryption,
for instance in voting systems e.g., [27], or more recently by some symmetric key
techniques over MPC [11].

However, one issue becomes immediately obvious - the protocol, as described,
cannot offer security for the malicious case. Protocol 4 description is secure
against passive adversaries, that is because each party can choose what its share
as ci. The protocol, nonetheless can be extended to provide malicious security
at the cost of adding communication rounds.

9

Malicious Case Let us first explore the basic naive approach to achieve mali-
cious security: First, we calculate the result provided by the exp(b, [a]p∗) func-
tionality, and then we compute exp(b, [a′]p∗) for [a′]p∗ which is the product of
[a]p∗ with some randomness [r]p∗ . We then just verify both calculated inputs are
equal. We show how to achieve this in Protocol 5.

Protocol 5: Secure exp(b,[a]) operation with public base against mali-
cious adversaries
Input: publicly available base b in Zq, secret shared exponent [a] in Zp∗
Output: secret shared [ba]

1 [ba]q ← exp(b, [a]p∗);
2 [r]p∗ ← sRand(Z∗p);
3 [a′]p∗ ← Product([r]p∗ , [a]p∗);

4 [ba
′
]p∗ ← exp(b, [a′]p∗);

5 r ← Open([r]p∗);
6 [r′]q ← sRand(Z∗q);
7 [v]q ← Product([r′], exp([ba]q, r)− [ba

′
]q) + [1]; // correct if [v] == 1

8 vq ← Open([v]q);

A similar process can be implemented by means of performing additional
calls to any semi-honest exp(b, [a]p∗) functionality, including ours. To achieve
this we take a somewhat different approach as shown in Protocol 6, in the sense
that we sacrifice randomness, and use b as the base of every call to exp(b, [a]p∗),
so that we can arithmetically operate over the exponents for verification.

Protocol 6: Secure exp+(b,[a]) operation with public base against ma-
licious adversaries
Input: publicly available base b in Zq, secret shared exponent [a] in Zp∗
Output: secret shared [ba]

1 [ba]q ← exp(b, [a]);
2 [r]p∗ ← sRand(Z∗p);
3 [a′]p∗ ← Product([a]p∗ , [r]p∗ − [1]);

4 [ba
′
]q ← exp(b, [a′]p∗);

5 [w]p∗ ← Product([a]p∗ , [r]p∗);
6 w ← Open([w]p∗);
7 [r′]q ← sRand(Z∗q);
8 [v]q ← Product([r′]q, Product(Product([ba]q, [b

a′]q), b
−w)− [1]) + [1]; //

correct if [v] == 1
9 v ← Open([v]q);

Given that all factors being multiplied are powers of the same base b, proto-
col 6 then performs the following operation: [a]p∗+Product([a]p∗ , [r]p∗−[1])−[w].

10

This in turn, translates to [a]p∗+ Product([a]p∗ , [r]p∗−[1])− Product([a]p∗ , [r]p∗).
Therefore we can correctly validate if the intermediate calls to the exp(b, [a]p∗)
functionalities are correct. Succinctly speaking [v] would be 1 if, and only if
integrity was maintained. Note that no other information is leaked by means
of applying [r′]q to the output, this is also true for Protocol 5. Note that the
protocol keeps the basic structure of its naive counterpart.

Security. Let πexp(b,[a]) be the Protocol 6. Then the ideal functionality Fexp(b,[a])

for the procedure exp(b,[a]) exactly FABB extended with exp(r, [e]). This
means that πexp(b,[a]) uses only the MPC operations provided by FABB. There-
fore, it is straightforward to see that πexp(b,[a]) is secure. Formally, we have the
following.

Theorem 1. The protocol πexp(b,[a]) securely implements Fexp(b,[a]) in the FABB

framework.

Proof. Since Fexp(b,[a]) is the same as FABB, the security of πexp(b,[a]) inherits
the security of the MPC operations in FABB. �

3.2 Public Exponent Case

We now present our constant time secure exponentiation protocol for the case
when the base b is privately held and the exponent a is public. The results
on this section make use of the exp(b, [a]p∗) functionality introduced by this
work, however, any other mechanism that implement such functionality could
be used instead. Furthermore, we assume exp(b, [a]p∗) can be realized providing
perfect security against semi-honest and malicious adversaries. This case ideal
functionality can be defined as follows:

Definition 4. Let base b and exponent a be elements of Zq where [b] is privately
preserved, a is publicly available and hosted by any subset of honest parties. The
ideal functionality Fexp([b],a) retrieves the secret b and [a] and returns to the
adversary [ba].

We show how to implement our exp([b], a) functionality in Protocol 7, note
that it directly provides security against passive and active adversaries.

The protocol itself works as follows: Parties agree on a unique generator g
and some secret shared randomness [r̄]q. The protocol, then makes use of [r̄]q to
mask the base [b]q by calculating [c]q = Product([r̄]q, [b]q). Note that [c]q is then
immediately made public. The protocol proceeds to compute [ca]q by means of
calling exp(b, [a]p∗) functionality. Finally, the protocol is able to construct the
expression [r′] ·a− [r′] ·a as the exponent of an [r] whilst multiplying [ba], which
is equivalent to Product([r0], [ba]) = [ba].

11

Protocol 7: Secure exp([b],a) operation with public exponent

Input: secret shared base [b] in Zq, public available exponent a in Zp∗
Output: secret shared [ba]

1 g ← getGenerator(Zq); [r′]p∗ ← sRand(Zp∗);
2 [r̄]q ← exp(g, [r′]p∗); // gr

′

3 [c]q ← Product([r̄]q, [b]q);
4 c← Open([c]q);

5 c′ ← ca; // c′ = g[r
′]·a · [b]a

6 [e]p∗ ← −a · [r′]p∗ ;
7 [ba]q ← c′ · exp(g, [e]p∗); // c′ · re

Security. Let πexp([b],a) be the protocol described in Protocol 7. Then the ideal
functionality Fexp([b],a) for the procedure exp([b],a) is FABB extended with
exp(b, [a]), which is described by Protocol 6. But Fexp(b, [a]) is the same as FABB,
hence Fexp([b],a) is also the same as FABB. Therefore, the security of this protocol
is also straightforward.

Theorem 2. The protocol πexp([b],a) securely implements Fexp([b],a) in the FABB

framework.

Proof. The same as the proof of Theorem 1. �

3.3 Privacy Preserving Exponentiation

We now introduce our constant time protocol for secure exponentiation given a
privately held base b and exponent a. Its ideal functionality can be expressed as
follows:

Definition 5. Let base b ∈ Zq and exponent a ∈ Zp∗ be privately preserved and
hosted by any subset of honest parties. The ideal functionality Fexp([b],[a]) takes
[b]q and [a]p∗ as input and returns [ba] as output.

Our construction assumes that exp(b,[a]) functionality is available. Our
construction, showcased by protocol 8, offers perfect security against both, pas-
sive and active adversaries.

In this case, we make use of many of the mechanisms introduced by Protocol 7
with some basic dissimilarities. Basically, to obtain [ca]p∗ , the protocol makes
use of the secure exp(b, [a]) functionality. This way the protocol can obtain [c′]q,
instead of c′. Despite this, protocol behaves just in the same way as described for
Protocol 7. Note that also plain and scalar arithmetic operations are replaced
by their equivalent privately preserving counterparts.

Security. Let πexp([b],[a]) be the protocol described in Protocol 8. Then the
ideal functionality Fexp([b],[a]) for the procedure exp([b],[a]) is again FABB

extended with exp(b, [a]), the ideal functionality of which is nothing but FABB.
Hence, the security of Fexp([b],[a]) is also straightforward.

12

Protocol 8: Secure exp([b],[a]) operation with shared exponent and
base
Input: secret shared base [b] in Zq, and exponent [a] in Zp∗
Output: secret shared [ba]

1 g ← getGenerator(Zq); [r′]p∗ ← sRand(Zp∗);
2 [r̄]q ← exp(g, [r′]p∗) //g[r

′]

3 [c]q ← Product([r̄]q, [b]q);
4 c← Open([c]q);

5 [c′]q ← exp(c, [a]p∗); // g[r
′]·[a] · [b][a]

6 [e]p∗ ← −1 · Product([r′]p∗ , [a]p∗);
7 [ba]q ← Product([c′]q, exp(g, [e]p∗));

Theorem 3. The protocol πexp([b],[a]) securely implements Fexp([b],[a]) in the
FABB framework.

Proof. The same as the proof of Theorem 1. �

Remark on security. As we can see, the security of our protocols follow directly
from the actual security of the MPC operations in FABB achieved in practice.
As we have mentioned in the previous section, seminal results such as BGW [19]
and CCD [22] showed that any functionality can be achieved with perfect se-
curity, as long as a majority of the players are honest for the semi-honest case,
and two thirds for the malicious case. Security against malicious adversaries
in the presence of dishonest majorities can also be achieved at the cost of an
offline computation phase [6,20,7]. Furthermore, sub-protocols (i.e., the MPC
operations in FABB) are UC secure, hence they can be securely composed.

3.4 Complexity

All of our protocols have constant round and multiplicative complexity with
respect of the size of the input. Note that in all our protocols the amount of
work and their multiplicative depth grows linearly with respect to the number
of parties n. Given that the focus of industry and academia have been cen-
tered on developing and optimizing protocols for the 2-Party and 3-Party case
e.g. [28,29,12,13], we have introduced in our complexity analysis both scenar-
ios. It is worth notice that other protocols designed for n-parties such as [6,30]
have been mainly used on either the 2 or 3 party scenario e.g. [31]. Table 2 show-
cases how such protocol complexities vary on these different scenarios. Note that
round complexity (r.) or multiplicative depth is the same as the multiplicative
complexity (amount of work) for all our protocols.

Although the multiplicative depth of the protocol is altered by the number
of parties, its effect is constrained to the linear behavior we mentioned above.
For the malicious case the asymptotic complexity of all protocols is the same
i.e., O(log(n)), albeit the function constants would be larger (protocols would
require to use the exp(b, [a]) variant, that is secure against active adversaries,

13

Table 2. Protocol Complexity for Exponentiation Protocols

Semi-Honest

Protocol 2-P 3-P n-P

exp([b], a) O(1) → 6 r. O(1) → 8 r. O(log(n)) → (4 + 2 · dlog(n)e)
exp(b, [a]) O(1) → 2 r. O(1) → 3 r. O(log(n)) → (1 + dlog(n)e)
exp+(b, [a]) O(1) → 2 r. O(1) → 3 r. O(log(n)) → (1 + dlog(n)e)
exp([b], [a]) O(1) → 10 r. O(1) → 13 r. O(log(n)) → (7 + 3 · dlog(n)e)

instead of its passive counterpart, which requires a proportionally larger amount
of work).

3.5 Performance

To estimate our protocols performance, we consider that the cost of an atomic
non-linear (or equivalent) operation is negligible (additions and scalar multipli-
cations), given they do not depend on communication rounds. Given that our
multiplicative complexity is equivalent to our round complexity for all our pro-
tocols, it follows that: we can easily project the computational time that our
protocols need by measuring one multiplication. For instance, we have used the
Ben-Or, Goldwasser and Wigderson [19] (BGW) protocol implementation de-
scribed by [32] to test its multiplicative performance. The implementation is a
C++ self-contained library based on Number Theory Library (NTL) [33] designed
for 3 parties in a semi-honest setting. For our estimations, we have averaged two
million of multiplications (using Gennaro’s protocol [34]) on a 64-bit server with
2*2*10-cores Intel Xeon E5-2687 at 3.1GHz where only the minimum 2 core
pero process needed where used. The results yield a 2.08 · 10−5 seconds time per
each communication round consisting of a single multiplication. We can then
extrapolate the computational time of our protocols as follows: i). exp(a, [b]) is
6.24 · 10−5 seconds; ii). exp([a], b) is 1.665 · 10−4 seconds and; iii). exp([a], [b])
is 2.7 ∗ 10−4 seconds. Similar estimations could be performed for other settings
using any other suitable MPC protocol e.g., SPDZ [6,7].

4 Public Key Decryption

We now show how to use our primitives to build a particular secure distributed
decryption scheme that can be utilized for threshold decryption. Under this
scenario a private key sk is shared among n parties, and a publicly available
ciphertext c (of a message m) has to be decrypted, such that the output of the
decryption is a share under any linear secret sharing scheme used for MPC. In
other words from c and [sk], we have to obtain [m]. This way we can use public
key decryption as a subprotocol for any other MPC functionality. We explore
such scenario for two basic and well known public key schemes, namely RSA [15],
ElGamal [16]. We start by giving an overview about these protocols. Note that

14

all schemes described in this section are IND-CPA-secure. In all the protocols
below, λ denotes the security parameter.

We stress that such distributed decryption can be of interest in applications,
such as privacy-preserving biometric authentication. For instance, one can en-
crypt users’ biometric templates and share the decryption key among different
parties. Then, when a user wants to authenticate, the user provides an encrypted
fresh biometric template, which is then compared with the stored template in a
distributed fashion. At the end, the result indicating whether there is a match
is jointly decrypted by the parties following the procedures that we present in
this section. We plan to demonstrate this in the future.

4.1 RSA

The RSA encryption is based on the hardness of prime factorization of integers.

– KeyGen: The key generation algorithm takes a security parameter λ as input
and outputs a public key pk = (n, e) and a private key sk = (p, q, d), i.e.,
(pk, sk)← KeyGen(λ). Here and throughout forward, for the purposes of this
section p and q are large distinct primes, n = pq, e is such that gcd(e, φ(n)) =
1, and d satisfies de ≡ 1 mod φ(n), where φ() is the Euler’s totient function.

– Enc: The encryption algorithm takes the public key pk = (n, e) and a message
which is converted into a number m < n as input and outputs a ciphertext
c ≡ me mod n; i.e., c← Enc(pk,m).

– Dec: The decryption algorithm takes sk = (p, q, d) and a ciphertext c as input
and outputs a message m ≡ cd mod n; i.e., m← Dec(sk, c).

4.2 ElGamal

The ElGamal encryption is based on the hardness of discrete logs.

– KeyGen: The key generation algorithm takes a security parameter λ as input
and outputs a public key pk = (G, g, q, h) and a private key sk = x, i.e.,
(pk, sk) ← KeyGen(λ). This is done first by choosing a large prime p and a
generator for the multiplicative group G = Z∗p, whose order is q = p−1, and
then by choosing a random x ∈ G and computing h ≡ gx mod p.

– Enc: The encryption algirithm takes the public key pk = (G, g, p, h) and a
message which is converted into an element m ∈ G as input and outputs a
ciphertext c = (c1, c2), i.e., c ← Enc(pk,m), by computing c1 ≡ gy mod p
and c2 ≡ hym, for a randomly chosen y ∈ G.

– Dec: The decryption algorithm takes sk = x and a ciphertext c = (c1, c2) as
input and outputs a message m ≡ c−x1 c2 mod p; i.e., m← Dec(sk, c).

4.3 Privacy Preserving decryption

The data oblivious implementation of the decryption protocols of this public key
schemes can be easily achieved by reusing both the exponentiation functionality

15

described in Section 3 and the modulo operation showcased above. In our case,
We assume that the ciphertext is publicly available, whereas the private key is
secret shared. The objective for us is to have a secret shared version of the mes-
sage without leaking its content to any party involved in the computation.
Note that protocols to perform secure modulo operations for MPC, have indeed
been extensively studied by the literature. We can name for instance the con-
struction from the seminal paper by Damg̊ard et al. [8]. In recent years, more
efficient results although sometimes with more limited security capabilities e.g.
statistical instead of perfect security, have been introduced as well e.g. [9].

RSA For this case, given that the decryption protocol m ← Dec(sk, c), where
c ≡ me, the computation of [m] can be summarized by the computation of:
m = cd = (me)d mod N. Thus, with the functionality provided by this work it
suffices for the parties computing the decryption to do [m]← exp(c, [d]) mod N .

ElGamal The decryption protocol in this case consists on some basic operations
on what we assume to be publicly available c1 and c2 values, as follows: m = c2

cx1
mod p. To implement such protocol on MPC, where the sk [x] is secretly shared
we make use of the following: a scalar multiplication, our exponentiation method,
the multiplicative inverse of such result, which can be computed in one round,
and a secure mod operation: [m] = c2 · Inverse(exp(c1, [x])) mod p.

5 Conclusions

In this paper, we introduce secure mechanisms to perform exponentiation over
MPC for arithmetic circuits without bit decomposition. Our protocols are simple
and easy to follow mechanisms that have constant round/multiplicative com-
plexity and offer security against semi-honest and malicious adversaries. Our
protocols, besides being lean and simplified, improves the current state of the
art for such kind of mechanisms. Additionally, we included a possible appli-
cation for our techniques, in the form of public key decryption. Further work
should explore the viability of these results on other related MPC fundamental
applications such as comparisons. Another direction for future work would be
to validate our protocols in practical applications such as in biometric settings,
where templates need to be securely transmitted to some MPC based processing
server, using PKI infrastructure.

Acknowledgements. This work was supported in part by the Research Council
KU Leuven: C16/15/058. In addition, this work was supported by the European
Commission through and H2020-ICT-2014-644371 WITDOM and the Flemish
Government through the imec Distributed Trust program and through ICON
Diskman. The authors would like to thank Prof. Nigel Smart and the anonymous
reviewers for their comments and inputs.

16

References

1. Ning, C., Xu, Q.: Multiparty computation for modulo reduction without bit-
decomposition and a generalization to bit-decomposition. In Abe, M., ed.: Ad-
vances in Cryptology - ASIACRYPT 2010: 16th International Conference on the
Theory and Application of Cryptology and Information Security, Singapore, De-
cember 5-9, 2010. Proceedings, Berlin, Heidelberg, Springer Berlin Heidelberg
(2010) 483–500

2. Ning, C., Xu, Q.: Constant-rounds, linear multi-party computation for exponen-
tiation and modulo reduction with perfect security. In Lee, D.H., Wang, X., eds.:
Advances in Cryptology – ASIACRYPT 2011: 17th International Conference on
the Theory and Application of Cryptology and Information Security, Seoul, South
Korea, December 4-8, 2011. Proceedings, Berlin, Heidelberg, Springer Berlin Hei-
delberg (2011) 572–589

3. Bogetoft, P., Christensen, D.L., Damg̊ard, I., Geisler, M., Jakobsen, T., Krøigaard,
M., Nielsen, J.D., Nielsen, J.B., Nielsen, K., Pagter, J., Schwartzbach, M., Toft,
T.: Secure multiparty computation goes live. In Dingledine, R., Golle, P., eds.: Fi-
nancial Cryptography and Data Security: 13th International Conference, FC 2009,
Accra Beach, Barbados, February 23-26, 2009. Revised Selected Papers, Berlin,
Heidelberg, Springer Berlin Heidelberg (2009) 325–343

4. Bogdanov, D., Kamm, L., Laur, S., Sokk, V.: Rmind: a tool for cryptographi-
cally secure statistical analysis. IEEE Transactions on Dependable and Secure
Computing (99) (2016) 1–1

5. Aly, A., Van Vyve, M.: Practically efficient secure single-commodity multi-market
auctions. In Grossklags, J., Preneel, B., eds.: Financial Cryptography and Data Se-
curity: 20th International Conference, FC 2016, Christ Church, Barbados, February
22–26, 2016, Revised Selected Papers, Berlin, Heidelberg, Springer Berlin Heidel-
berg (2017) 110–129

6. Damg̊ard, I., Pastro, V., Smart, N.P., Zakarias, S.: Multiparty computation
from somewhat homomorphic encryption. In: CRYPTO. Volume 7417 of LNCS.,
Springer (2012) 643–662

7. Keller, M., Orsini, E., Scholl, P.: Mascot: Faster malicious arithmetic secure com-
putation with oblivious transfer. In: Proceedings of ACM SIGSAC. CCS ’16, ACM
(2016) 830–842

8. Damg̊ard, I., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally secure
constant-rounds multi-party computation for equality, comparison, bits and expo-
nentiation. In: TCC. (2006) 285–304

9. Catrina, O., de Hoogh, S.: Improved primitives for secure multiparty integer com-
putation. In: SCN. (2010) 182–199

10. Cramer, R., Damgrd, I., Nielsen, J.: Secure Multiparty Computation and Secret
Sharing. Cambridge University Press (2015)

11. Grassi, L., Rechberger, C., Rotaru, D., Scholl, P., Smart, N.P.: Mpc-friendly sym-
metric key primitives. In: Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security. CCS ’16, New York, NY, USA, ACM
(2016) 430–443

12. Bogdanov, D., Laur, S., Willemson, J.: Sharemind: A Framework for Fast Privacy-
Preserving Computations. In: ESORICS. Volume 5283 of LNCS., Springer (2008)

13. Araki, T., Furukawa, J., Lindell, Y., Nof, A., Ohara, K.: High-throughput semi-
honest secure three-party computation with an honest majority. In: Proceed. of
the ACM SIGSAC. (2016) 805–817

17

14. Canetti, R.: Security and composition of multiparty cryptographic protocols. Jour-
nal of Cryptology (Jan 2000) 143–202

15. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM (1978) 120–126

16. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In Blakley, G.R., Chaum, D., eds.: Advances in Cryptology: Proceed-
ings of CRYPTO 84, Berlin, Heidelberg, Springer Berlin Heidelberg (1985) 10–18

17. Szepieniec, A., Preneel, B.: New techniques for electronic voting. Number 809
(2015) 30

18. Damg̊ard, I., Nielsen, J.B.: Universally composable efficient multiparty compu-
tation from threshold homomorphic encryption. In: CRYPTO. Volume 2729 of
LNCS., Springer (2003) 247–264

19. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: STOC, ACM (1988) 1–10

20. Bendlin, R., Damg̊ard, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryp-
tion and multiparty computation. In Paterson, K.G., ed.: Advances in Cryptology
– EUROCRYPT 2011: 30th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Tallinn, Estonia, May 15-19, 2011. Pro-
ceedings, Berlin, Heidelberg, Springer Berlin Heidelberg (2011) 169–188

21. Shamir, A.: How to share a secret. Commun. ACM 22(11) (1979) 612–613
22. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols.

In: STOC, ACM (1988) 11–19
23. Catrina, O., de Hoogh, S.: Secure multiparty linear programming using fixed-point

arithmetic. In: ESORICS. (2010) 134–150
24. Lipmaa, H., Toft, T.: Secure equality and greater-than tests with sublinear online

complexity. In: ICALP (2). (2013) 645–656
25. Cramer, R., Damg̊ard, I., Ishai, Y.: Share conversion, pseudorandom secret-sharing

and applications to secure computation. In Kilian, J., ed.: Theory of Cryptography.
Volume 3378 of LNCS. Springer Berlin Heidelberg (2005) 342–362

26. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: FOCS ’01. (2001) 136–145

27. Peeters, R., Nikova, S., Preneel, B.: Practical rsa threshold decryption for things
that think. In: 3rd Benelux Workshop on Information and System Security. (2008)

28. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a
completeness theorem for protocols with honest majority. In: STOC, ACM (1987)
218–229

29. Huang, Y., Evans, D., Katz, J., Malka, L.: Faster secure two-party computation
using garbled circuits. In: USENIX Security Symposium. (2011)

30. Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical
covertly secure mpc for dishonest majority or: Breaking the SPDZ limits. In:
ESORICS. Volume 8134 of LNCS. Springer (2013) 1–18

31. Damgrd, I., Damgrd, K., Nielsen, K., Nordholt, P.S., Toft, T.: Confidential bench-
marking based on multiparty computation. Cryptology ePrint Archive, Report
2015/1006 (2015) http://eprint.iacr.org/2015/1006.

32. Aly, A.: Network Flow Problems with Secure Multiparty Computation. PhD thesis,
Universté catholique de Louvain, IMMAQ (2015)

33. Nishide, T., Ohta, K.: Multiparty computation for interval, equality, and compar-
ison without bit-decomposition protocol. In: PKC. (2007) 343–360

34. Gennaro, R., Rabin, M.O., Rabin, T.: Simplified vss and fast-track multiparty
computations with applications to threshold cryptography. In: PODC, ACM (1998)

18

http://eprint.iacr.org/2015/1006

	Practically Efficient Secure Distributed Exponentiation without Bit-Decomposition

