
A New Look at the Refund Mechanism in the
Bitcoin Payment Protocol

Sepideh Avizheh1, Reihaneh Safavi-Naini1, and Siamak F. Shahandashti2

1 University of Calgary, Calgary, Alberta, Canada
(sepideh.avizheh1,rei)@ucalgary.ca

2 University of York, York, United Kingdom
siamak.shahandashti@york.ac.uk

Abstract. BIP70 is the Bitcoin payment protocol for communication
between a merchant and a pseudonymous customer. McCorry et al.
(FC 2016) showed that BIP70 is prone to refund attacks and proposed a
fix that requires the customer to sign their refund request. They argued
that this minimal change will provide resistance against refund attacks.
In this paper, we point out the drawbacks of McCorry et al.’s fix and
propose a new approach for protection against refund attacks using the
Bitcoin multisignature mechanism. Our solution does not rely on mer-
chants storing the refund request, and unlike the previous solution, allows
updating the refund addresses through email. We discuss the security of
our proposed method and compare it with the previous solution. We
also propose a novel application of our refund mechanism in providing
anonymity for payments between a payer and payee in which merchants
act as mixing servers. We finally discuss how to combine the above two
mechanisms in a single payment protocol to have an anonymous payment
protocol secure against refund attacks.

1 Introduction

Since the introduction of Bitcoin [12] in 2008, it has been widely adopted by
merchants and as of February 2015, the number of merchants who accept Bitcoin
as a payment method has passed 100,000 [8]. BIP70 [1] is the payment protocol
between a pseudonymous customer and a merchant with PKI certificate. The
protocol, provides a number of properties to improve the interaction between
the two (e.g. allows merchant’s address to be human-readable) and providing
the necessary guarantees (e.g. provides a proof of payment to the customer that
can be used for dispute resolution). One important feature of the protocol is that
the customer can specify refund addresses that will be used by the merchant in
the case of overpayments, or refunds for cancelled orders.

McCorry, Shahandashti and Hao [11] however showed two Refund attacks
that are referred to as, Silkroad trader attack and Marketplace trader attack
separately, on BIP70 that exploits the one-way authentication of the protocol.
In Silkroad trader attack, a malicious customer uses Refund mechanism of pay-
ment to an honest merchant to pay to a Silkroad trader. This is by simply



putting the address of the Silkroad trader as the refund address, and cancel the
transaction within the allowed period. Authors carefully analysed the steps of
the attack and showed its feasibility by implementing it. They also considered a
second attack, called Marketplace trader attack, in which a rogue trader plays
the role of Man-in-the-Middle (MITM) between the customer and a reputable
merchant and effectively direct the customer’s payment to its own address after
sending a message to change the refund address. In both these attacks, the anal-
ysis of blockchain data will not reveal the attacks. In McCorry et al.’s solution
the customer signs the refund addresses by the public key he has used in the
payment (the signature is called proof of endorsement) and so effectively links
the refund addresses to the customer address. This prevents the first attack be-
cause customer cannot deny not knowing the Silkroad trader, and discourages
the second one that required the merchant to update the refund address through
the email.

The solution is carefully described and analyzed. One important shortcoming
of the solution however, is that, providing protection against the first attack
required the merchant to maintain a database of all proof of endorsements and
signed transactions to be used in the case of dispute: that is merchant being
able to provide a proof that they have followed the customer’s request and they
are not in collusion with the Silkroad trader. This is what we refer to as stateful
solution. The solution will be costly to implement locally (because of possible
system failure or subversions) and need additional (possibly cloud-based) reliable
storage and management. Note that the proofs in the database indicates the
relation of the customers to refund addresses which should be kept confidential
which will add to the cost of maintenance.

Our contributions. In Section 3, we introduce an alternative approach which
we call stateless, meaning that the merchant does not need to keep the database.
The solution idea is as follows: To reply to a refund request, merchant creates two
transactions; one that locks the bitcoins to both the refundee and the customer,
and one that sends the bitcoins to the customer alone, after a lock time has
passed. To claim the bitcoins, the customer should sign the transaction for the
refundee. This proves that the customer knows the refundee and the refundee’s
address is authenticated. If the refundee and the customer do not know each
other, as is the case in the Marketplace attack, the first transaction is never
unlocked, but the customer can use the second transaction to redeem the bit-
coins. We will discuss how the scheme can be modified when there are more
than one transaction issuer (this is the refund condition that was considered by
McCorry et al.). The details of this solution is given in Section 3. In the case
of Marketplace trader, our solution does not put any restriction on the BIP70.
This is in contrast to the previous solution that had the restriction that refund
address change not to be accepted through email. Such a restriction which is
not specified by the BIP70 would likely to be ignored in practice, rendering the
solution insecure.

In section 4 we consider a novel application of Refund mechanism for pro-
viding anonymity for payments. The main observation is that refund addresses



in Bitcoin can effectively provide a level of indirection that if carefully used,
can decouple the payer and payee. In our proposal, the merchant provides a
mixing service that allows the customers to pay for other services and to other
merchants using a combination of overpayment and refund. By “mixing” trans-
actions of multiple customers the linkage of transactions using their payer and
payee fields, as well as values, will be removed.

Finally, in Appendix A we discuss how the above two mechanisms can be
combined to provide an anonymous payment protocol with security against re-
funds attacks.

2 Preliminaries

2.1 The BIP70 Payment Protocol

BIP70 [1] is a payment protocol that defines the sequence of messages com-
municated between a customer and a merchant. The protocol consists of three
messages: payment request, payment, and payment acknowledgment. It proceeds
as follows.

After the customer selects an item from the merchant’s website and clicks to
pay, the merchant responds by sending a payment request message. This message
contains payment details, the information related to merchant’s X.509 certificate
(PKI type and PKI data), as well as the signature of the merchant on the hash of
the payment request. Here payment details consists of the Bitcoin address that
the customer should send the bitcoins to, the time that request has been created,
an expiration time, a memo containing notes to the customer, a payment URL,
and finally the merchant data which is used by the merchant to identify the
payment request.

The customer’s Bitcoin wallet verifies the signature and the merchant’s iden-
tity, the information in the payment details, such as the time of the request
creation and expiry, displays the merchant’s identity, the amount to pay, and
the memo to the customer and asks the customer whether they want to con-
tinue. If confirmed, the wallet will create the necessary Bitcoin transactions for
the payment and broadcast them to the peer-to-peer network. Then, a payment
message is sent to the merchant. This message consists of the merchant data
from the payment details in payment request, one or more valid Bitcoin trans-
actions, the refund to field which specifies a set of refund amount and address
pairs to be used in the case of a refund request, and a note for the merchant
(memo).

When the merchant receives the payment message, it verifies that the trans-
actions satisfy the payment conditions, broadcasts the transactions, and sends
back a payment acknowledgment message. This message contains a copy of the
payment message and a final memo including a note on the status of the trans-
action.

BIP70 does not specify how the payment request message should be down-
loaded, but requires that the payment and payment acknowledgment messages
are communicated over a secure channel (such as HTTPS).



BIP70 does not explicitly define a refund protocol. It is implicitly assumed
that if the customer requests a refund identifying the payment by the merchant
data field, the merchant issues a refund transaction which sends the refund
amounts to the corresponding refund addresses specified in the refund to field of
the payment message. Figure 1 shows the communication flow in BIP70 and its
implicit refund procedure.

Customer Merchant

Click to pay
PaymentRequest: { pki_type, pki_data, payment_details, signature } 

payment_details: { pay_to, time, expires, memo, payment_url, merchant_data } 

Payment: { merchant_data, transactions, refund_to, memo }

PaymentAck: { payment, memo }

Broadcast 
transactions

Broadcast 
transactions

Refund Request: {merchant_data}

Broadcast 
refund transactions

B
IP

7
0

 P
ay

m
en

t 
P

ro
to

co
l

R
ef

u
n

d

Fig. 1. The BIP70 payment protocol and its refund procedure.

2.2 Refund attacks

McCorry et al. propose two attacks on the refund process of BIP70 [11]. These
attacks work even if a secure channel such as HTTPS is used for communication
between parties. We briefly describe these two attacks in the following.

Silkroad Trader attack. The refund addresses provided by the customer (in
the refund to field) are in no way endorsed and can be repudiated at a later time.
This means that a malicious customer may abuse the refund mechanism to relay
their payment to an illicit trader (here called the Silkroad trader) through an
honest merchant. The customer simply provides the illicit trader’s address as
the refund address to the merchant and thus when a refund is requested, the
merchant will send the refund to the illicit Trader. The customer can later deny
abusing the refund mechanism and the merchant will have no way to prove they
have been cheated. Figure 2 shows the interaction among parties in this attack.

Marketplace Trader attack. Some merchants allow customers to specify new
refund addresses upon a refund request. The customer requesting the refund
is not authenticated. This means that any entity who has knowledge of the



Customer Merchant

PaymentRequest2

Payment2: { …, refund_to = pay_toST , … }

PaymentAck2

Broadcast Tx

Broadcast Tx

Refund Request

Broadcast 
RefundTx

Silkroad Trader

PaymentRequest1: { …, { pay_toST , … }, … } 

Payment1: { …, transactions = RefundTx, … }

PaymentAck1

Fig. 2. The Silkroad Trader attack.

payment identifier (specified in the merchant data field of the payment details
in the payment request message) can request a refund to any arbitrary account.
This is the basis for the Marketplace Trader attack, in which a rogue trader
acts as relaying man-in-the-middle for the payment request message between the
merchant and the customer. Hence, the rogue trader is able to find out merchant
data. At a later time, the rogue trader requests a refund to an arbitrary address
and is able to steal the funds. Figure 3 shows the interactions among the parties
in this attack.

2.3 McCorry et al.’s Solution to Refund Attacks

McCorry et al. propose to include in the payment message a “proof of endorse-
ment” for refund addresses. To do this, each customer address involved in the
payment protocol is required to produce a digital signature on (and therefore
“endorse”) a corresponding refund address. Employing this solution, at the end
of a successful payment protocol, the merchant will be in possession of a proof of
endorsement for each refund address. Such a proof can be presented and verified
by a third party in case of a Silkroad Trader attack to implicate the malicious
customer. Besides, since such a proof of endorsement is valuable for merchants,
McCorry et al. argue that it will discourage merchants to accept new refund
addresses unless accompanied by a proof of endorsement, resulting in reducing
the possibility of Marketplace Trader attacks.

As noted earlier, maintaining a secure and robust database to store proof of
endorsement messages is a security bottleneck of the system and can particu-
larly become expensive for smaller merchants with limited resources. McCorry
et al. noted other limitations of their solution due to Bitcoin inherent problems,
including transaction malleability. In particular, the customer can tamper with



Rogue Trader Merchant

PaymentRequest: {…, { merchant_data }, …}

Payment
Broadcast Tx

Broadcast Tx

Refund Request: { merchant_data, refund_to }

Broadcast RefundTx

Customer

PaymentRequest (copied)

PaymentAck

Fig. 3. The Marketplace Trader attack.

the transaction by re-signing and then broadcasting it to the network. Re-signing
will change the transaction hash and the proof stored in the database will not
match. Hence, for effective protection against attacks, merchants will need to
also store payment transactions as well as payment request and payment mes-
sages which are required to verify the proof of endorsement. Therefore, the actual
storage overhead of McCorry et al.’s solution is much larger than only keeping
proofs of endorsement.

2.4 Multisignature and Time-Locked Transactions in Bitcoin

Although it is convenient to think of Bitcoin transactions as sending funds to
certain account addresses, technically what the transaction specifies is a set of
redemption criteria in a certain script language. Any subsequent transaction
which satisfies the redemption criteria may authorize the transfer of funds made
available in the original transaction.

The most popular script is “Pay to Public Key Hash” (P2PKH), which re-
quires a signature corresponding to an address, hence effectively sending the
bitcoins to the address. Typical Bitcoin transactions use this script.

Another popular and more versatile script is “Pay to Script Hash” (P2SH),
which requires satisfying a script, the hash of which is listed. P2SH can be used to
implement a diverse range of transactions including multisignature transactions.
A k-of-n multisignature transaction requires k signatures corresponding to k
addresses within a set of n specified addresses to be present to redeem the funds
in the transaction.

An interesting script which can be combined with the ones discussed above
is one that effectively freezes the transaction funds until a time in the future to
create a so-called time-locked transaction. The funds in a time-locked transaction



cannot be spent by any other transaction until a certain (absolute or relative)
time in the future.

3 A new approach for protection against Refund attacks

We propose a solution to Refund attack that does not require the merchant to
maintain a secure and robust database, and is resilient to Bitcoin transaction
tampering. We consider two types of attackers.

– Online attacker, intercepts the communication channel and sees all the
input/output messages of a merchant.

– Offline attacker, has only access to the blockchain data.

To simplify our description we first assume BIP70 communication is over
HTTPS and so we only need to consider an offline attacker. We then show how
to secure the protocol against an online attacker.

Our goal is to provide the following properties for Refund mechanism.

Stateless. No information that links the customer and the refund addresses will
be stored at the merchant’s database.

Robust. Refund mechanism works correctly against a strong attacker who
breaks into the merchant’s system and arbitrarily delete or tamper with
the stored data.

We also aim to stay with the specification of BIP70 and do not add extra
restriction including not accepting refund address by email. Note that Refund
addresses are valid for two months from the time of the payment [1], and during
this period the customer should be allowed to change the refundees’ addresses
for example when an existing refundee has lost their wallet. Coinbase and Bitpay
[7, 6] both accept refund address updates via email.

3.1 Our Solution

We use capabilities of Bitcoin transactions, namely multisignature and time-
locked transactions, to link the refund addresses to the customer. Thus the mer-
chant’s evidence for innocence is stored in an immutable distributed database.

The Refund mechanism works as follows. The merchant creates a 2-of-2 mul-
tisignature transaction, and hence binds the refund amount to both the customer
and refundee. Then, to make the protocol robust in the case that one of the ad-
dresses is not available, a second transaction is created. This second transaction
is a time-locked transaction, and the customer is its only recipient. Merchant
uses a lock time for this transaction to give priority to the first transaction. If
the customer and the refundee could not collaborate to redeem the bitcoins,
the customer is able to claim them after the lock time. Note that the lock time
creates a delay in the system only if the customer does not know the refundee,
which uses the setting of the Marketplace trader attack. In other words, the
second transaction is a back up for system robustness (see Figure 4).



Fig. 4. (a) The main transaction. (b) The proposed Refund mechanism, in which mer-
chant locks the transaction to the customer and the refundee and if they spend this
transaction later, the merchant is assured that they know each other.

In addition, to satisfy address freshness3 the merchant deterministically cre-
ates fresh addresses from the public key of the customer and then masks them
with a Diffie-Hellman key derived using the fresh address of the customer and
the private key of the merchant. This is to ensure that only the merchant can
see the relation of the Refund key to the payment transaction. To derive fresh
addresses we have assumed that customer has a deterministic wallet based on
BIP32 [16]. Most Bitcoins wallets support BIP32 and so this is a reasonable
assumption. A deterministic wallet generates a tree of public/private key pairs
on elliptic curve E; for example for a 1 level tree, it creates 231 hardened and
231 non-hardened keys. Hardened keys, are public keys that their associated
private keys can only be known before generation of public key. Non-hardened
keys however allow anyone to derive a valid public key from them, while the
owner of the parent private key can generate the respective child private key. In
our protocol, the customer address in the payment transaction is a non-hardened
public key which is used as a parent key by the merchant to derive child public
keys. The customer knows the respective private keys and can also create the
Diffie-Hellman key using the child private key and the public key of the mer-
chant. Hardened keys can be used for refund addresses. The step by step process
is give below (see Figure 5):

Key generation. Customer wallet software generates a tree of public/private
key pairs using BIP32 [16]. Each private key is an integer in Fq, where q = pn

3 It is recommended that Bitcoin transactions use fresh addresses [4]. That is, users
should create fresh public keys for each transaction and do not reuse addresses. This
is for better privacy.



is a prime power, and each public key is a point on the elliptic curve E over
Fq. Let Pkc = cP be a non-hardened public key. A child public key can be
computed by anyone using this parent public key as follows:
Pk′c = Pkc + H(Pkc, chaincode, index)P ; where Pk′c is a child public key,
chain code is the 256 rightmost side of the previous hash using HMAC SHA512,
and index is the index number of the generated child key in the tree (see [16]
for details).
Pk′c is the derived child public key, which is Pk′c = c′P , but only the customer
who knows the parent private key can compute the child private key, c′.

Click to pay. Customer visits the merchant website and chooses an item, then
clicks on “pay”.

Payment request. Merchant sends the payment request message including
their public key, Pkm = mP . This public key is unique for each customer.

Payment message. After authenticating and authorizing the merchant, the
customer chooses one of their non-hardened public keys, Pkc, and gener-
ates a payment transaction, that we call MainTC ; this transaction transfers
the cost of the chosen item to the merchant. Then, the customer creates
a payment message based on MainTC, and specifies the refund addresses,
(Pkr1 , Pkr2 , . . . , Pkrn), and the amount refund for each address.

Payment ack. The merchant detects MainTC, and returns an acknowledge-
ment message to the customer.

Refund request. Within a 2 month period from the payment request [1], the
customer can use the addresses provided in refund to field to receive their
refund. In this case, the merchant does the following:

1. Derives child keys, Pk′ci for 1 ≤ i ≤ n + 1 , from the parent key Pkc.
2. Masks the child keys as Pk′′ci = Pk′ci + H(mPk′c)P for 1 ≤ i ≤ n + 1.
3. Creates and broadcasts two transactions, RefundTC1 and RefundTC2.

RefundTC1 is a P2SH transaction which sends bitcoins to whom provides
signatures using Pk′′cj and Pk′′rj for 1 ≤ j ≤ n. RefundTC2 is a P2PKH
transaction which sends the bitcoins to Pk′′cn+1

with a determined lock
time, e.g. one week.

3.2 Protection against Silkroad trader attack

In Silkroad trader attack, the customer wants to remove their link to the Silk
Road by using a victim merchant. In our approach the refund transaction has
been locked to the customer and the refundee (that is Silk Road here), and so
if they redeem the bitcoins in the next transaction it means that they know
each other and the linkage is disclosed. This linkage however is hidden from
those who observe the Bitcoin blockchain and so the merchant is the only one
who knows this linkage. Thus he can prove that a payment transaction and a
refund transaction are linked to each other by, first deriving the child keys from
the payment transactions and adding the respective Diffie-Hellman key (based
on the public key of the merchant and the customer’s child key) to them, then
finding the refund transaction with this child key, and finally showing that the



Fig. 5. Protection against Refund attacks; Communication flow is similar to BIP70 [1].
Upon a refund request, merchant creates two transactions to lock the bitcoins to both
the customer and the merchant. He also generates a transaction which pays the same
amount to the customer only; this transaction has a lock time.

transaction has been spent by the customer and the refundee, and so they must
know each other. The merchant does not need to store anything in their database
and the proofs are robustly preserved.

3.3 Protection against marketplace trader attack

If the customer provides a refund address during BIP70 protocol run and later
update it via email, the merchant just uses the newest refund address and locks
the refund amount to both the refundee and the customer. If the customer
knows the refundee and signs the transaction for them to redeem the bitcoins,
the transaction will be finalized; else if the rogue trader sends their own address
to the merchant, they cannot later claim the bitcoins since the customer will
not sign the transaction. The customer can claim the refund, if they notice
the attack, after the lock time. Thus the approach protects the customer and
provides the possibility to update the refund addresses.



3.4 Discussion

Our goal is to minimize the storage cost of the merchant, preferably limit to a
constant, while providing robustness against refund attacks. In the following, we
show how each of the mentioned properties will be satisfied.

Minimizing protocol state information. A merchant may store infor-
mation that are communicated during a payment protocol for various reasons,
including bookkeeping, refund or exchange, or statistics about customers and/or
products. Here we do not consider bookkeeping that is mainly for accounting pur-
poses and/or the ability to honour refund or exchange policies. Nor we consider
data storage that are for statistical analysis purposes. As noted in [11], using
bitcoin payment protocol requires merchant to store evidences to help them
protect against refund attacks. We refer to this last type of information as the
state information of bitcoin payment protocol. This information must be kept for
sufficiently long time to protect against refund attacks.

Consider a single run of the payment protocol. The merchant must store
transaction ids of the MainTC, and both the refund transactions that are Time-
locked-TC and Two-address-TC. Merchant must also store the chain code and
the indices that they have used to derive the refund child keys, and their own
public key that is used for masking. In the case of a dispute, the merchant
can retrieve the main and the refund transactions, from the blockchain, using
their stored transaction ids, use the chain code, index and the public key of
the customer in the MainTC, to derive the related child key, and use their own
private key m, to re-create the masked address, Pk′′c = Pk′c +H(mPk′c)P . If the
transaction with this address is a spent transaction, it implies that the customer
with the public key Pkc and child public key Pk′c, is connected to the refundee.
Therefore, to expose the linkage between a customer and a refundee, merchant
must store some pointers to the evidence that are transaction ids, the chain code,
the index needed for child key, and his own private/public key. Each pointer is
32 bytes and so 3 × 32 bytes are needed for the three transactions ids, and 32
bytes for the chain code and 2×32 bytes for two indexes, one for the child key of
customer in Time-locked-TC and one in Two-address-TC, resulting in 192 bytes
in total. Note that the merchant can always use a deterministic approach for
the child key indexes, in which case they do not need to store them (storing the
number of indexes he has used is enough) and so the storage size will be reduced
to 130 bytes and will be independent of the number of refundees.

In the following we compare the storage cost of our proposed protocol with
that of [11] (see table 1). In [11], proof of endorsement is a signature that must
be locally stored. Verification of this signature needs information about the main
transaction and the communicated messages including, the main transaction in-
puts, refund address, refund value, the memo from the customer, and payment
request message. Merchant also needs to store the transaction ids. Let LS denote
the required storage for the signature (size of the signature). The main transac-



tion input with one signer is at least 146 bytes 4. Other values are, refund address
which is 20 bytes (doubled hash), refund value is 8 bytes, memo and payment
request message sizes are denoted by LPay and can reach 50,000 bytes. Finally a
transaction id is 32 bytes. Thus in total, for each refundee, 238+LS +Lpay bytes
must be stored at the merchant, and this cost grows linearly with the number of
refundees. Thus the total storage for n refundees will be 210+n×28+LS +Lpay

bytes which is significantly higher than our scheme.

Table 1. Storage size (in bytes) of our approach vs. [11]

Scenario [11] Our approach

1 refundee 238 + LS + Lpay 130
n refundee 210 + LS + Lpay + 28n 130

Robustness. The payment protocol must work correctly if an attacker breaks
into the system and arbitrarily delete or tamper with the stored data. In [11], if
the local database that stores the signature (proof of endorsement) is crashed,
the evidence of the collusion will be removed and the merchant will become com-
pletely vulnerable. In our proposed approach however merchant can exhaustively
search all main transactions that are stored on the blockchain, and compute all
possible values for the customers’ refund addresses, and find the customer who
is connected with a particular refundee. To do so, merchant first finds all trans-
actions that have been issued to his address. These transactions, i.e. MainTC
transactions, are detectable through merchant’s certified addresses. Additionally,
merchant derives the respective child key using all of their possible values for
chain code and indexes. They also try all their private keys to mask the child key
and compare the result with the customer address connected to the refundee. If
they match, MainTC, public key, index and merchant’s private key are stored
as evidences that connects the customer to refundee.

3.5 Multi-signer payment transaction

So far we assumed that payment transaction is generated by a single customer.
In the following we show that a functionality similar to [11], for multiple signer
case can be provided.

When a payment transaction is created by multiple signers, endorsing the
refund address by a single signer has the danger of allowing them to steal the
bitcoins. McCorry et al.’s solution is resilient against this attack because each
key that is used in the payment transaction should endorse its own refund ad-
dress. In our scheme however, the customer does not provide any signature before
the refund and so the merchant does not know which refund address belongs to

4 Previous transaction hash is 32 bytes, previous Tx-out index is 4 bytes, Tx-in script
length is 1-9 bytes, public key is 33 bytes in compressed format, signature is 72 bytes,
sequence number is 4 bytes.



which signer in the MainTC, and blindly locks the bitcoins to all of the sign-
ers. Although this solution prevents Refund attacks and provides Statelessness
and robustness, it is not efficient in the sense that the refundee must interact
with all of the signers (that he may not know) to claim the bitcoins. In ad-
dition, one of the signers may refuse to sign. We use the following refund to
field in the payment message; if there are n customers with public keys Pkc1 ,
Pkc2 ,...,Pkcn and p refund addresses as Pkr1 , Pkr2 , ..., Pkrp , refund to field will
be {(Pkc1 , Pkr1 , v), (Pkc2 , Pkr2 , v2), ...}. This binding is authenticated later in
our protocol, and so no signature is needed at this stage.

We review possible attacks after introducing this modification. In Silkroad
trader attack, the customer may modify refund to field and put the Silk Road
address as a refund address of another signer. Since the merchant will lock the
refund transaction to the victim co-signer, the bitcoins cannot be claimed by
the Silkroad trader since the victim co-signer does not know the Silkraod trader.
The co-signer can solely claim the bitcoins through the second transaction (P2SH
transaction) issued for them by the merchant. This is not what the customer or
the Silkroad trader desire and so they will not plan for this attack. In Marketplace
trader attack, a co-signer may intend to change the refund addresses after the
payment is finalized to steal the bitcoins. In this case, he will present a new refund
address for each key used in the payment transaction. Again the merchant locks
the bitcoins to the main customer and the new refundee and so the bitcoins will
stay in locked form since the attacker cannot obtain the signature of the main
customer on that transaction. Furthermore, customer can redeem the bitcoins
from the second issued transaction (P2SH transaction).

Note that,

1. A co-signer cannot change the value of refund through email. If the value is
changed, the merchant will lock the bitcoins to all of the customers to ensure
that they know about the change.

2. When the payment transaction is a multi-signature transaction, each of the
signers who has authorized the payment transaction should introduce at
least one refund address. Even if two parties agree on one refund address,
both should introduce it and merchant should lock the refund to both of
them through 3-of-3 multi-signature output (or n-of-n if the number of them
is n − 1). If a signer refute to introduce a refund address, Silkroad trader
attack becomes probable.

3.6 Comments on the proposed solution

If HTTP communication is used, we can use one of the following approaches to
preserve the unlinkability of the payment transaction and the refund transaction:
(i) encrypt refund to field in payment message (or any sensitive information),
or (2) generate a refund transaction, derive child keys of the refund addresses
and then mask them, using the same algorithm introduced for anonymizing the
customer address (this is for single-signature payment transactions).

For the efficiency of our scheme, we can add a flag in the payment message
sent from customer to merchant to indicate whether the customer wants to have



the second transaction (the P2PKH) for redeeming the bitcoins or not. This
option is to reduce the burden on merchant and it is a sensitive information that
must be sent in an encrypted format. Whenever the customer uses the refund
address that he knows, he can choose this option, but note that in this case the
update ability of refund addresses through email should be disabled to impede
the Marketplace trader attack.

Fortunately, transaction malleability is not any issue in our approach, since
the proof does not depend on any information before the broadcast, instead
proof is based on transactions that have been accepted in blockchain whereas
they are suspicious.

4 Transaction privacy using refund mechanism

Despite using pseudonym for senders and receivers of transaction, it has been
shown that transactions can be linked [2, 13, 14] and combined with other data
possibly reveal user identities. There have been a number of approaches for
providing anonymity [15, 9, 10, 3]. Stealth address schemes [15] guarantee address
anonymity against an online attacker who intercepts the communication link
and sees the Bitcoin address of the payee when it is sent to payer to create the
transaction. By stealth address technique, payer adds a Diffie-Hellman key to
the payee’s address in a way that the corresponding private key is still known by
payee. In CoinSwap [10] a party uses an intermediary node to send the payment
to payee; the goal is anonymity against online attacker. In CoinJoin [9] a number
of parties agree to create one transaction together, they also use values with equal
worth to provide value anonymity against an offline attacker. In Fair Exchange
[3] two people exchange their bitcoins with each other to achieve coins with a
history that is unrelated to them, to resist against an offline attacker. Each of
these solutions can be considered as a traditional mixing service. Users can also
mix their coins through a mix server (e.g. bitmixer.io [5]), which receives their
coins and pay them back a fresh coin, although mixer receives a fee from the
user. This technique, however has a problem, user should trust the mix server
that they will not steal his money.

Refund mechanism provides a level of indirection that can be used for adding
privacy to transactions. We propose to use merchants as a trusted mixing servers
by using a modified BIP70 protocol refund’s policy. To use this service, the
customer visits the website of a merchant and selects an item for purchase.
By using overpayment and the recipients’ addresses as the refund addresses,
the sender can send payment to refundees in an anonymous way. Alternatively,
they can send the desired amount to the merchant and later cancel their order
for the refund. In these situations, merchant acts as an intermediary to allow
the customer to pay the bitcoins to the recipients indirectly. Merchant can also
split the value to smaller chunks and mix the refund transactions of different
entities to provide value and time anonymity respectively. Reputable merchants
are generally trusted and are expected to follow the protocol. Note that the
merchant does not know if the refundee in a refund transaction is a customer



and cannot relate the output bitcoin addresses to the user. Merchants can benefit
for such service by requesting a fee for it.

In our proposed protocol, the merchant receives inputs from customers’
transaction, and issues transaction with outputs based on the addresses in the
refund to field of the payment message. Merchant generates child keys of the
respective refund addresses, split the values of refund to smaller equal chunks
and sends the partitioned values to child keys. Merchant considers the refund
address as a parent key and uses its child keys for refund transactions to have a
fresh address for each chunk. To provide confidentiality for the parent refund key
(this is needed because we assume online attacker exists and the communication
is HTTP), the merchant encrypts it using the Diffie-Hellman key generated by
the public key of the merchant and the private key of the customer, which had
been used in the payment. For secure mixing, the time relationship between the
input and the output of the mix must be protected. Otherwise an adversary who
intercepts the merchant’s channel can link the two using the time information
of the merchant input and output. In the following protocol the merchant mixes
the refunds of different customers and hides the time relation between inputs
and outputs of the mix service.

Key generation. Customer wallet software generates a tree of public/private
key pairs based on BIP32 [16]. Assume that one of the non-hardened public
keys is Pkc = cP .

Click to pay. Customer visits the merchant website and chooses an item, then
clicks on ”pay”.

Payment request. Merchant sends the payment request message including his
public key, Pkm = mP . This public key is unique for each customer.

Payment message. After authenticating and authorizing the merchant, cus-
tomer chooses one of the non-hardened public keys, Pkc, and generates
MainTC that sends the cost of the chosen item to Merchant. Then, he
creates a payment message with refund addresses, Pkrj ,∀1 ≤ j ≤ p, for
p refund address, and the amount of bitcoins each address should receive.
Then he encrypts the refund to field using Diffie-Hellman key H(cPkm).

Payment ack. Merchant detects MainTC, and returns an acknowledgement
message to customer.

Refund request. Within a predetermined distance from payment request (can
be defined in refund to field according to the agreement between merchant
and customer), customer can use the addresses provided in refund to field
to receive his refund. In this case, merchant
1. Splits the values of different customers to k partition such as v11, v12,

and v1k for v1, and v21, v22, and v2k for v2 and so on.
2. Computes the Diffie-Hellman key of each customer as H(mPkci) =

H(ciPkm) for decrypting the refund addresses.
3. Derives child keys, Pk′rli ∀1 ≤ l ≤ k, and ∀1 ≤ i ≤ n, for n customers.
4. Mixes chunks of n customers (v11, v12,v1k, v21, v22, ..., vkn).
5. Creates and broadcasts a few transactions that pay the chunks to child

keys of refund addresses.



Fig. 6. (a) Splitting the value for each refundee, (b) Deriving child keys of each refund
address.

4.1 Discussion

Our approach is close to CoinJoin [9] compared to other approaches. CoinJoin
has two versions; in the first version users should agree and join to create one
transaction. Because this co-joined transaction mixes inputs and outputs of dif-
ferent users, an offline attacker can not distinguish the relation between them,
provided that the inputs are all in the same range. In the second version of
CoinJoin, users trust in a third parties and they sends their inputs and intended
outputs to them. Third party mixes the input and outputs of different users and
create one transaction. Then send it back to each user to sign it. In this proce-
dure, the third party learns the relation between input/output and IP addresses
of the users. This approach cannot withstand against online attackers who in-
tercepts the communication channel of the third party. To hide the Ip address
from online attacker, Tor or VPN should be used [9].

In our scheme, Customers start a normal purchase from a merchant, and
send the excess transferred amount, or alternatively the whole payment, to the
refundee through merchant. First of all, it should be noted that refund request
can be sent via a different communication channel such as email (by providing
payment acknowledgement), so online attacker will not see the refund request.
Second, an online attacker never can be assured that the customers have really
made a purchase or not, or even which item they have bought, since it is possible
to make overpayments to hide the exact amount of payment. Third, In CoinJoin
the final transaction consisted of output users who have been introduced by the
input users, meaning that anyone knows that the output address has a relation
with one the inputs, and furthermore the values in the input and output can
leak information about the linkage of them. However, In our scheme any relation
between the inputs and outputs in the sense of time, value, and address are
removed and a global passive attacker who monitors communication links and the
blockchain cannot achieve any information (see Figure 7). Fourth, Merchants will
not steal the bitcoins of the customers because of their reputation. This feature
is necessary for any indirect payment; in CoinSwap [10], which is also an indirect
payment method, first a commitment transaction is created to impede theft and
then the transfer is done. But in our scheme even if merchant does not deliver



the bitcoins to refundee, customers can present their payment acknowledgement
message to judge and prove the theft. Effectively, using merchant as a mixing
server extends the search space for linking transactions and ensures a higher
anonymity compared to CoinJoin.

Fig. 7. (a) Coinjoin: Alice wants to send bitcoins to Carol and Elena, and Bob to
David. CoinJoin mixer creates a transaction in which Alice and Bob are the payers
and Carol, Elena, and David are payees. The value of each output reveals its linkage
to one of the inputs. (b) Our scheme: Alice wants to pay to Elena and Carol, and Bob
to David. So, Alice pays the bitcoins to merchant, and introduces Carol and Elena as
refundees, through BIP70. Bob also pays the bitcoins to merchant and introduces David
as refundee. Merchant creates a few refund transactions which are mixed and randomly
chosen in each transaction to hide the linkage of payment and refund transactions in
the sense of time, value, and address.

Comment: To have an anonymous payment protocol which can withstand
refund attacks as well, we can combine the abovementioned protocols. The
scheme is given in Appendix A. The channel in this scheme is assumed to be
HTTPS.

5 Conclusion

In this paper, we introduced a new approach to mitigate Refund attacks against
BIP70. We argued that our solution is stateless so the merchant does not need



to store any refund request or proof in the database. This protocol is also robust
and no one can remove the proofs accidentally or deliberately, or tampered
with them. In addition, with this payment protocol, ability of updating refund
addresses through email becomes possible without the fear of marketplace trader
attack. In addition, we also proposed a new application for Refund Mechanism.
We argued that merchants can act as a mixing server to provide anonymity for a
payer and payee. This scheme removes relation between the inputs and outputs
in different transactions (payment transaction and refund transaction). Finally,
we combined the mentioned schemes to have an anonymous payment protocol
which is also secure against Refund attacks.

References

1. Andresen, G., Hearn, M.: Bip 70. https://github.com/bitcoin/bips/blob/

master/bip-0070.mediawiki (07 2013), online, accessed on February 2017
2. Androulaki, E., Karame, G.O., Roeschlin, M., Scherer, T., Capkun, S.: Evaluating

user privacy in bitcoin. In: International Conference on Financial Cryptography
and Data Security. pp. 34–51. Springer (2013)

3. Barber, S., Boyen, X., Shi, E., Uzun, E.: Bitter to betterhow to make bitcoin a
better currency. In: International Conference on Financial Cryptography and Data
Security. pp. 399–414. Springer (2012)

4. bitcoinwiki: Address reuse. https://en.bitcoin.it/wiki/Address_reuse (4
2017), online, accessed on May 2017

5. bitmixer: High volume bitcoin mixer. https://bitmixer.io/ (2014), online, ac-
cessed on September 2017

6. BitPay: Can bitpay refund my order? https://support.bitpay.com/hc/en-us/

articles/203411523-Can-BitPay-refund-my-order- (2015), online, accessed on
February 2017

7. Coinbase: How can i refund a customer with the api?
https://support.coinbase.com/customer/en/portal/articles/

1521752-how-can-i-refund-a-customer-with-the-api- (2015), online, ac-
cessed on February 2017

8. Cuthbertson, A.: Bitcoin now accepted by 100,000
merchants worldwide. http://www.ibtimes.co.uk/

bitcoin-now-accepted-by-100000-merchants-worldwide-1486613 (2 2015),
online, accessed on March 2017

9. Maxwell, G.: Coinjoin: bitcoin privacy for the real world (2013). URl:
https://bitcointalk. org/index. php

10. Maxwell, G.: Coinswap: Transaction graph disjoint trustless trading. CoinSwap:
Transactiongraphdisjointtrustlesstrading (October 2013) (2013)

11. McCorry, P., Shahandashti, S.F., Hao, F.: Refund attacks on bitcoins payment pro-
tocol. In: International Conference on Financial Cryptography and Data Security.
pp. 581–599. Springer (2016)

12. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)
13. Reid, F., Harrigan, M.: An analysis of anonymity in the bitcoin system. In: Security

and privacy in social networks, pp. 197–223. Springer (2013)
14. Ron, D., Shamir, A.: Quantitative analysis of the full bitcoin transaction graph. In:

International Conference on Financial Cryptography and Data Security. pp. 6–24.
Springer (2013)



15. Todd, P.: https://lists.linuxfoundation.org/pipermail/bitcoin-dev/

2014-January/004020.html (01 2014), online, accessed on March 2017
16. Wuille, P.: https://github.com/bitcoin/bips/blob/master/bip-0032.

mediawiki (02 2017), online, accessed on February 2017

A An anonymous BIP70 secure against Refund attacks

In this section, we aggregate the schemes in previous sections to have a unique
scheme which is resilient against Refund attacks [11] and an offline attacker who
want to breach privacy of users.

Key generation. Customer wallet software generates a tree of public/private
key pairs using BIP32 [16].

Click to pay. Customer visits the merchant website and chooses an item, then
clicks on ”pay”.

Payment request. Merchant sends the payment request message including his
public key, Pkm = mP . This public key is unique for each customer.

Payment message. After authenticating and authorizing the merchant, cus-
tomer chooses one of the non-hardened public keys, Pkc, and generates a
transaction, that we call it MainTC ; this transaction sends the cost of the
chosen item to Merchant. Then, he creates a payment message based on
MainTC. In payment message customer determines a few refund addresses,
(Pkr1 , Pkr2 , . . . , Pkrn), and the amount of bitcoins each address should re-
ceive in case of order cancellation or overpayment. Then he encrypts the
refund to field using Diffie-Hellman key H(cM1).

Payment ack. Merchant detects MainTC, and returns an acknowledgement
message to customer.

Refund request. Within a predetermined distance from payment request, cus-
tomer can use the addresses provided in refund to field to receive his refund.
In this case, merchant

1. Splits the values of different customers to k partition such as v11, v12,
and v1k for v1, and v21, v22, and v2k for v2 and so on.

2. Computes the Diffie-Hellman key of each customer as H(mPkci) =
H(ciM) for decrypting the refund addresses.

3. Derives child keys for each customer Pk′cj , Pk′ril , ∀1 ≤ l ≤ k, ∀1 ≤ j ≤
k + 1.

4. Masks child keys as Pk′′cj = Pk′cj + H(c′jM2)P for ∀1 ≤ j ≤ k + 1.
5. Creates and broadcasts two transactions for each chunk/address, one

that locks the bitcoins to refund addresses and the respective customer
and one that can be used by the customer to claim the bitcoins.


