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Abstract. A signature scheme is unique if for every public key and
message there is only one signature that is accepted as valid by the
verification algorithm. At Crypto 2017, Guo, Chen, Susilo, Lai, Yang,
and Mu gave a unique signature scheme whose security proof incurred
a security loss logarithmic in the number of hash oracle queries made
by the adversary, bypassing an argument due to Bader, Jager, Li, and
Schége that the security loss must be at least linear in the number of
signing oracle queries made by the adversary. Unfortunately, the number
of elements in a Guo et al. signature is also logarithmic in the number of
hash oracle queries made by the adversary.

We translate Guo et al’s signatures into the integer factorization setting.
Doing so allows us to bring to bear signature aggregation ideas due to
Lysyanskaya, Micali, Reyzin, and Shacham. We obtain unique signatures
that are short and have a tight security reduction from the RSA problem.

1 Introduction

A signature scheme is unique if for every public key and message there is only
one signature that is accepted as valid by the verification algorithm. Unique
signatures make useful building blocks in primitives such as verifiable random
functions [16].

At Eurocrypt 2016, Bader et al. [I] used a meta-reduction technique to
show that any security proof for a unique signature scheme given some static
assumption must incur a gs security loss, where g5 is the number of signing oracle
queries made by the adversary. In other words, e-intractability of the underlying
hard problem will translate only into gse-unforgeability of the unique signature.
By contrast, there exist signature schemes with just two valid signatures per
message whose security reductions incur a security loss of 2 [§].

At Crypto 2017, Guo et al. [9] observed that the Bader et al. meta-reduction
made an assumption about how the unforgeability reduction would break the
underlying hard problem: that it would extract the information it needed from
the adversary’s forgery. An unforgeability reduction that instead extracts the
information it needs from the adversary’s hash oracle queries (in the random
oracle model) would fall outside the Bader et al. model and might be able to give
better security guarantees.



Guo et al. presented a unique signature scheme with a proof of security
assuming the computational Diffie-Hellman problem is intractable with a security
loss of just nq,li/ " where ¢, is the number of hash oracle queries made by the
forger and n is a scheme parameter. Security loss is minimized by choosing
n = In q,. Unfortunately, signatures in Guo et al’s scheme have length linear
in n; Guo et al. describe the resulting signatures as “somewhat impractical even

taking the loss factor into account,” but “theoretically interesting.”

Our contributions. We show that the ideas of Guo et al. give rise not just to
“theoretically interesting” unique signatures with tight reductions but also to
practical ones. We give a unique signature scheme with the same security loss as
that of Guo et al. —nq,l,/ " — where signatures consist of just two group elements,
compared to n + 1 for Guo et al.

Guo et al. signatures consist of n+ 1 iterations of an underlying BLS signature.
A BLS signature on a message M is of the form H(M)*, where z is the secret
exponent. It is straightforward to replace BLS with RSA full-domain hash
signatures, of the form H(M)% mod N, where d is a secret exponent.

Our key insight is that although BLS and RSA signatures have a similar
signing operations but quite different verification operations. BLS verification
transforms a signature in group G into a value in group Gt by means of the
pairing. It is intractable to go in the other direction, from Gt to Gy [17]. RSA
verification computes 0¢ mod IV, where e is the public exponent, producing a value
that is still in Z/NZ and therefore might be transformed into another signature
to verify. This property was used by Lysyanskaya et al. [12] to build aggregate
signatures from RSA. In an aggregate signature, a single, short signature takes
the place of n signatures by n signers on n respective messages. A verifier given
the aggregate signature o, public keys pk,,..., pk,, and messages M,..., M,
should accept only if the signing key corresponding to each pk; was applied to
M; in the signing protocol.

The ideas of Lysyanskaya et al. do not immediately apply to give a short
variant of Guo et al’s signatures. The key difference is that in an aggregate
signature scheme the verifier must still be sent the messages M1, ..., M,; in Guo
et al’s scheme, M; includes o ||os]| - - - ||oi—1; transmitting even just M,, along
with the signature would negate any benefit to be had from signature aggregation.

We replace o1 |0z - - - [|oi—1 in Guo et al’s block messages with G(M, 1,01) ®
G(M,2,02)®---® G(M,i—1,0,_1), essentially aggregating the block messages
along with the block signatures. The Guo et al. security analysis no longer applies,
and we replace it with a new security analysis that draws on both Guo et al. and
Lysyanskaya et al.

The ith block signature in our scheme is of the form

, d
o; = [Ui,1+H(M,Z,/Li,1)} mod N
along with the block messages aggregated as as above. The verifier can compute

ti—1 as p;PG(M, i, 0;), then peel back o; to recover 0,1 as 0¢—H (M, i, 1;—1) mod
N. Verification consists of repeating this procedure n times starting from (o, tt,)-



Our scheme resembles a construction for single-signer aggregate signatures
with message recovery presented (without security proof) by Neven [14].

We show how our scheme can be instantiated from any family of certified
trapdoor permutations, then explain how to obtain a suitable permutation from
RSA. Our scheme shows that unique signatures built using the Guo et al. paradigm
can be of more than just theoretical interest. At the 128-bit security level, and
assuming ¢s = 2% and ¢, = ¢ = 2%°, a signature in our scheme is under 4,000
bits, including 256 bits for the group E, whereas full-domain RSA signatures
must be nearly 6,000 bits long to obtain (128 4 40)-bit factoring security and
make up for their loose security reduction. (These estimates make use of the
bit-length formula of Orman and Hoffman [I5].)

2 Preliminaries

Trapdoor permutations. Let D be a finite set. A permutation family IT over D spec-
ifies a randomized algorithm for generating (descriptions of) a permutation and its

inverse, written (s, t) & Generate; an evaluation algorithm Fwvaluate(s, -); and an
inversion algorithm Invert(t, -). We require that, for all (s, ) output by Generate,
FEvaluate(s, ) be a permutation of D, and that Invert(t, Evaluate(s, )) be the
identity map.

A trapdoor permutation family is one way if it is hard to invert given just
the forward permutation description s. Formally [I2 Definition 2.1}, a trapdoor
permutation family is (¢, €)-one way if no ¢-time algorithm .4 has advantage
greater than € in the game

Adv Invert 4 Lfpy [m = A(s, Bvaluate(s,z)) : (s,t) & Generate,x & D] ,

where the probability is over the coin tosses of Generate and A.

A trapdoor permutation is certified [3] if a permutation description s output
by Generate can be efficiently recognized: if there is an algorithm Certify that
returns 1 for every string in the set .S = {8 | (s,1) pid G’enemte} and 0 for every
string not in the set S.

Where it does not introduce ambiguity, we prefer a more compact notation:
we write (m,7~1) & IT in place of (s, t) & Generate and 7(-) and 7—1(-) in place
of FEvaluate(s,-) and Invert(t, -) respectively.

Digital signatures. A digital signature scheme consists of a randomized key
generation algorithm that emits a (public) verification and a (private) signing

key, written (pk, sk) & KeyGen; a (possibly randomized) signing algorithm that
takes a signing key and a message M € {0,1}", and emits a signature o, written

o & Sign(sk, M); and a (usually not randomized) verification algorithm that
takes a verification key, message, and claimed signature, and returns 0 or 1,

written 1 = Verify(pk, M, o). We require that for all (pk, sk) & KeyGen, for all
M € {0,1}", and for all & & Sign(sk, M) we have Verify(pk, M,c) = 1.



A digital signature scheme is (¢, gs, €) existentially unforgeable if no t-time
algorithm A4 has advantage greater than € in the game

Ad FOr e def P Verlfy(pku M*, O'*) = 1 :
v lf pr | |
g€ 4 (pk; Sk) & KeyGen, (M*’ O'*) & ASign(sk,A)(pk)

where the probability is over the coin tosses of KeyGen, Sign, and A, and where
we require that A make no more than g5 queries to the signing oracle and (to
exclude trivial forgeries) that .4 not have queried its signing oracle at M*.

In the random oracle model, all parties have access to a hash oracle that
returns an independently random result on every input. A digital signature
scheme is (t, qy, qs, €) if no t-time algorithm A has advantage greater than € in
game Adv Forge 4 above while making at most g5 signing oracle queries and at
most ¢y hash oracle queries. The definition generalizes naturally to multiple
oracle hash functions.

A digital signature is unique if for every message M € {0,1}" and every
public key pk there is at most one signature o such that Verify(pk, M,o) = 1.
This property must hold unconditionally, even for maliciously generated public
keys that would not be emitted by KeyGen. In a unique signature scheme the
signing and verification algorithms are not randomized.

Full-domain hash signatures. Trapdoor permutations give rise to a simple, natural
unique signature scheme. Let IT be a trapdoor permutation family over domain D,
and let H: {0,1}" — D be a hash function, modeled as a random oracle. The key

generation algorithm KeyGen picks a trapdoor permutation (s, t) & Generate
and sets pk = s and sk = ¢. The signing algorithm Sign(sk, M) parses sk as ¢t and
emits o = Im)ert(t,H (M )) The verification algorithm Verify(pk, M, o) parses
pk as s and rejects if Certify(s) # 1; checks that o is an element of D and rejects
if not; and, finally, accepts if Fvaluate(s,o) = H(M) and rejects otherwise.

In our compact notation, the signature on a message M is o = 7~ (H(M));

the verifier checks whether (o) Z H(M).

Certifying that s is valid ensures that Evaluate(s,-) is a permutation of D;
there can be only one element of D whose image under that permutation is
H(M), which guarantees unique signatures.

Bellare and Rogaway showed that the full-domain hash signature scheme is
existentially unforgeable in the random oracle model if the underlying trapdoor
permutation is one-way [2]. Their reduction suffered a security loss of g;. Coron
gave an improved security analysis, with security loss ¢s, assuming that the
underlying trapdoor permutation family is homomorphic, as RSA is [6]. Coron
later gave a “meta-reduction” that showed that any proof that full-domain hash
signatures are secure assuming that an underlying trapdoor permutation family
is one way must incur a ¢g security loss [7]. Even so, Kakvi and Kiltz proved that
RSA full-domain hash signatures are secure under the phi-hiding assumption
with a tight reduction [10]. Kakvi-Kiltz signatures have public exponent e < N 174,
With e in this range, the RSA permutation is not certified, and the resulting
signatures are not unique.



3 Unique Signatures with Tight Security Reduction

At Eurocrypt 2016, Bader et al. [I] extended Coron’s meta-reduction technique
to show that any security proof for a unique signature scheme assuming a static
assumption like computational Diffie-Hellman or the trapdoor permutation one-
wayness must incur a gs security loss. Nevertheless, at Crypto 2017, Guo et al. [9]
were able to present unique signatures secure under the computational Diffie-
Hellman problem, with a tight security reduction. The Bader et al. metareduction
assumes that the simulator extracts the information it uses to break the underlying
problem from the adversary’s forgery. In the Guo et al. signature scheme, the
simulator instead extracts that information from the adversary’s hash queries. A
Guo et al. signature is built from n + 1 blocks, where n is a system parameter.
Each block consists of a BLS signature [4] on the message and the previous blocks.
For the adversary to compute the ith block of a forgery in progress, it must first
reveal blocks 1 through ¢ — 1 in a hash query; the simulator takes advantage of
these hash queries to solve the underlying hard problem.

The security loss in the Guo et al. reduction is nq}/ ". Even n = 2 improves
on the Bader et al. bound; with g, = 230, setting n = 55 gives security loss less
than 151[1]

Guo et al. observe that their signature framework could be instantiated using
a different underlying block signature. In this section, we translate the Guo et al.
signatures to the trapdoor permutation setting, still with signature size linear
in n. In the next section, we present our variant of Guo et al. signatures with
O(1) signature size.

Let IT be a trapdoor permutation family over domain D. Let H: {0,1}" x
N x D* — D be a hash function, modeled as a random oracle. Note that we can
instantiate H using a hash function H': {0,1}" — D by means of an unambiguous
encoding of {0,1}" x N x D* in {0,1}".

KeyGen. Pick (s,t) & Generate. The public key is pk = s. The private key
is sk=1t.
Sign(sk, M). Parse sk as t. For each i, 1 <i <n+ 1, compute

hi(—H<M77;,(01,02,...,O'7;,1)) and g; <—Im}€rt(t,hi) .

The signature is 0 = (01,02, ...,04,0nt1)-

Verify(pk, M, o). Parse pkas s and reject if Certify(s) # 1. Parse o as (01,09, .. .,
Ony0ni1) € DL and reject if parsing fails. For each i, 1 <i <n + 1, com-
pute

h; + H(MJ', (0'17 092,... 702‘,1)) .

For each 7, i < i <n+ 1, check that
Evaluate(s,0;) = h; .
If any of these checks fails, reject; otherwise, accept.

! The Bitcoin network hash rate is estimated at 27° hashes per day. See https:
//blockchain.info/charts/hash-rate, visited September 22, 2017.


https://blockchain.info/charts/hash-rate
https://blockchain.info/charts/hash-rate

The proof that the Guo et al. signature scheme is unforgeable [9, Section 5]
can be easily adapted to show that the variant above is unforgeable as well. The
simulator B is given the public description 7 of a trapdoor permutation, and an
element y* of D. Its goal is to find * € D such that w(z*) = y*. It sets 7 as the
challenge signing key and interacts with the forger A as specified by Guo et al.
For hash oracle queries other than the one in which it will embed the challenge,

the simulator chooses # ¢ D and returns 7(x) as the hash; this allows it to
compute the corresponding block signature x, should it later need to answer a
signing oracle query on the same message. For the hash oracle query where it
chooses to embed the challenge, A simply responds with y*. A subsequent hash
oracle query from B that contains the next block signature on the same message
will reveal * to B. The proof and analysis are otherwise unchanged.

4 Short Unique Signatures with Tight Security Reduction

We now explain how to compress the signatures of Guo et al. Our scheme is
inspired by the sequential aggregate signature of scheme of Lysyanskaya et al. [I2].

Let D be a group with operation +, identity Op, and inverse operation —.
Let IT be a trapdoor permutation family over domain D; we do not require any
homomorphic interaction between II and +.

Let A be a positive integer (whose value depends on the security parameter, as
discussed below), and let E be the set {0,1}" together with the bitwise exclusive
or operation @ and identity Og.

Let H: {0,1}" xNx E — D and G: {0,1}" x N x D — E be hash functions,
modeled as random oracles. As before, we can instantiate H and G from hash
functions with domain {0,1}" using appropriate unambiguous encodings.

KeyGen. Pick (s,t) & Generate. The public key is pk = s. The private key
is sk=t.
Sign(sk, M). Parse sk as t. Set

o9 < Op and o < O .
For each 7, 1 <1i < n, compute
o — Im}ert(t, oi—1+ H(M,1, m_l)) (1)

and
Wi < i—1 D G(M,i,Ui) . (2)

The signature is 0 = (o, fin).
Verify(pk, M, o). Parse pk as s and reject if Certify(s) # 1. Parse o as (o,
tn) € D x E, and reject if parsing fails. For ¢ from n down to 1, compute

Wim1 < i & G(M,i,0;) (3)

and
0i—1 < FEvaluate(s,o;) — H(M, i, pi—1) - (4)



Check that
oo =0p and wo =0g .

If either of these checks fails, reject; otherwise, accept.

4.1 Proof of Correctness

Let 0 = (oy, pin) be a signature on message M under keys pk = s and sk = t.
The signer computed partial values o¢,01,...,0, and ug, g1, .- ., by according
to and . The verifier will compute partial values o},,0,_,...,0( and
Wy i1y - - 5 1 according to ([3) and .

We know that ¢/, = o, and pl, = p,, because the verifier is verifying the
output of the signing algorithm. Suppose that for some i we have o} = o; and
pi = p;. Then

iy = p; ® G(M,i,07) = p; ® G(M,i,04) = pt;—1
and
oi_y = Evaluate(s,0,) — H(M, i, u,_,) = Evaluate(s,o;) — H(M, i, pi;—1)
= Evaluate(s, Im)ert(t, i1+ H(M,i,ui,l))) — H(M, i, 1)
=01+ HM,i,pi—1) — HM,i,pi—1) = 051 .

By induction, then, o, = g = 0p and u, = po = Op, so the verification checks
will succeed.

4.2 Proof of Uniqueness

Suppose for the sake of contradiction that o # ¢’ are two valid signatures on a
message M under public key pk. If pk cannot be parsed as s or Certify(s) # 1, the
verification algorithm will reject both o and ¢’. Accordingly, Fvaluate(s,-) must
be a permutation of D, which means that, for any w,v € D, if Evaluate(s,u) =
Evaluate(s,v) then u = v.

Parse o as (op, tin) € D x E and o’ as (o), u,) € D x E. If either signa-
ture fails to parse it will be rejected by the verification algorithm. Applied to
o, the verification algorithm will compute partial values o,,0,_1,...,00 and
Wy hn—15 - - -, Mo according to and . Applied to ¢’, the verification algorithm
will compute partial values o},,0/,_1,...,04 and pl, pul._q,...,u; according to
and (4)). All of the o; and o values must be elements of D because o, and o7,
are. All of the p; and p; values must be elements of E because p,, and pu,, are.

Since both o and ¢’ verify, we know that o¢g = Op, po = Og, of = Op, and
w6 = Og. Stated another way, we know that o9 = of, and pp = p(. Now suppose
that for some ¢ we have 0;,_1 = o}_; and p;—1 = p;_;. Then, substituting
twice in 0;_1 = 0}_; we obtain

Evaluate(s,0;) — H(M,i,pu;—1) = Evaluate(s,o}) — H(M,i,1;,_,) ,



and, substituting p_; = p;—1 on the right hand side, we obtain
Evaluate(s,o;) — H(M,i,pu;—1) = Evaluate(s, o)) — H(M,i,pi—1) ,

and we can obtain
FEualuate(s,o;) = Evaluate(s, o))

by adding H(M, i, 1;—1) to both sides. Because Fuvaluate(s,-) is a permutation,
we conclude that o; = o]. Now, substituting (3) twice into p;—1 = p;_, we have

Hi © G(M7i70i) = :ug @ G(leva'i)

and, since o; = o}, we conclude that G(M,i,0;) = G(M,i,0}) and therefore
w; = wi. By induction, o, = o}, and p,, = p,,, contradicting the assumption that

o#o'.

4.3 Proof of Unforgeability

Suppose, for the sake of contradiction, that there exists some algorithm A that
forges signatures with non-negligible probability. We will show that we can use A
to break the one-wayness of the underlying trapdoor permutation family I7.

Description of the simulator. We describe algorithm B that uses A to break
the security of the trapdoor permutation family I7.

Environment setup. Algorithm B is given a permutation key s* and a value y* € D.
Its goal is to compute z* € D such that Fvaluate(s*, z*) = y*. Algorithm B picks
an integer ¢* uniformly at random from the range [1,n], and then an integer
k* uniformly at random from the range [1, (g + 1)(”“*‘3*)/”]. (Note that the
range from which k* is chosen depends on ¢*.) Algorithm B initializes a global
variable x* to L and a global counter & to 0.

Algorithm B sets pk < s*; it does not know the corresponding sk. It then
runs A with input pk.

The tables recording hash oracle queries and responses. Algorithm B maintains a
table to help it answer H oracle queries, which we call the H-table. The H-table
starts out empty. Each row in the H-table has the following entries:

M € {0,1}",i € N, p € E: these, together, are the inputs to the hash query.

— z € D: the output from the hash query.

— good € {true,false}: a flag used by B to track hash queries that could
contribute to an eventual signature.

— internal € {true, false}: a flag used by B to track H oracle queries that it
initiated as part of signature generation, versus those initiated by A.

— x € DU{L}: a secret used by B as the basis for computing the answer z to

some hash queries.



Algorithm B likewise maintains a table to help it answer G oracle queries, which
we call the G-table. The G-table starts out empty. Each row in the G-table has
the following entries:

M € {0,1}",i € N, o € D: these, together, are the inputs to the hash query.
z € F: the output from the hash query.

good € {true,false}: a flag used by B to track hash queries that could
contribute to an eventual signature.

internal € {true, false}: a flag used by B to track G oracle queries that it
initiated as part of signature generation, versus those initiated by A.

w € EU{L}: the value algorithm A is expected to compute for p;, as the
xor of p;—1 and z, or L if not known.

Answering an H oracle query. To answer an H oracle query on (M,i,u) €
{0,1}" x N x E, B responds as follows.

1.

If there has already been an H oracle query for (M, i, u), there will be
an entry (M, i, u, z, good, internal, x) in the H-table. Algorithm B responds
with z. This keeps the oracle consistent if queried multiple times on the same
input.

. If i <1 ori>mn, the query is not relevant to any signature. Algorithm B

picks z & Dat random, sets good < false, internal < false, and x < L.
It adds the entry (M, 1, i, 2, good, internal, x) to the H-table, and responds
with z.

If i =1, B consults p. If 4 # Og, the query is not relevant to any signature.

Algorithm B picks z & Dat random, sets good < false, internal < false,
and x = L. It adds the entry (M, i, u, z, good, internal, z) to the H-table,
and responds with z.

Otherwise, = 0, and the query is relevant to an eventual signature on the
message M. Algorithm B will decide whether to embed its challenge as the
answer to this query, according to the following criteria. If this H oracle query
was generated internally by B as part of handling a signing query from A,
algorithm B sets internal < true; it will not embed its challenge as the
answer to this query. Otherwise, B sets internal < false. If i # ¢*, B will
not embed its challenge as the answer to this query. Otherwise, if i = ¢*, B
increments the global counter k. If the counter k¥ now has a value different
from k*, B will not embed its challenge as the answer to this query. Otherwise
all three of the following conditions hold: (1) the query was generated by .A4;
(2) i equals ¢*; and (3) k, incremented, equals k*. In this case B will embed
its challenge as the answer to this query.

If B didn’t chose to embed its challenge as the answer to this query, it selects

z & D, computes z < Evaluate(s*, x), and sets good < true. It adds the
entry (M, i, pu, z, good, internal, z) to the H-table, and responds with z.

If B did chose to embed its challenge as the answer to this query, it sets x < 1,
z + y*, and good + true. It adds the entry (M, 1, p, z, good, internal, x) to
the H table.



Before returning, algorithm B checks whether its answer to this query is
inconsistent with a previous query to the G oracle at level i. Algorithm B
examines all entries in the G-table matching (M"” = M, " =i, ", 2",
good” = false, internal”, u"). If x # 1, algorithm B checks for such an
entry with ¢ = z. If x = L, algorithm B checks for such an entry with
Evaluate(s*, ") = y*. In either case there is at most one such entry in the
G-table (in the latter case because Fvaluate(s*,-) is a permutation). If such
an entry exists, it was inserted with good = false but should have been
inserted with good = true. Algorithm B cannot fix this problem and must
abort.

If algorithm B was not forced to abort, it responds to the H-query with z.
. Otherwise, we have 2 < i < n. Algorithm B cannot immediately tell whether
1 makes the query good — it must consult G oracle queries for the previous
block, ¢ — 1. Algorithm B searches the G-table for an entry matching (M’ =
M, i =i—1, o', 2, good = true, internal’, ;i = uu). There is at most one
such entry in the G-table.

If no matching entry is found, the query is not relevant to any signature.

Algorithm B picks z & Dat random, sets good < false, internal < false,
and x = L. It adds the entry (M, i, u, z, good, internal, z) to the H-table,
and responds with z.

Otherwise, there is a matching entry (M’ = M, i/ =i —1, o/, 2/, good =
true, p/ = p). (For each M’ and i’ there can be at most one entry in the
G-table with good’ = true.) This means that the H query now being handled
is relevant to an eventual signature on the message M. Algorithm B will
decide whether to embed its challenge as the answer to this query according
to the following criteria. If this H oracle query was generated internally by B
as part of handling a signing query from .4, algorithm B sets internal + true;
it will not embed its challenge as the answer to this query. Otherwise, B sets
internal < false. If i # ¢*, B will not embed its challenge as the answer to
this query. Otherwise, if i« = ¢*, B increments the global counter k. If the
counter k now has a value different from £*, B will not embed its challenge as
the answer to this query. Otherwise all three of the following conditions hold:
(1) the query was generated by A; (2) i equals ¢*; and (3) k, incremented,
equals £*. In this case B will embed its challenge as the answer to this query.
If B didn’t chose to embed its challenge as the answer to this query, it selects

& D, computes z < FEvaluate(s*,z) — o, and sets good < true. It adds
the entry (M, i, u, z, good, internal, x) to the H table, and responds with z.

If B did chose to embed its challenge as the answer to this query, it sets x < L,
z + y*—o', and good < true. It adds the entry (M, i, u, z, good, internal, x)
to the H table.

Before returning, algorithm B checks whether its answer to this query is
inconsistent with a previous query to the G oracle at level i. Algorithm B
examines all entries in the G-table matching (M"” = M, " =i, ", 2",

good” = false, internal”, u"). If x # 1, algorithm B checks for such an
entry with ¢ = z. If x = 1, algorithm B checks for such an entry with
Evaluate(s*, ") = y*. In either case there is at most one such entry in the



G-table (in the latter case because Fvaluate(s*,-) is a permutation). If such
an entry exists, it was inserted with good = false but should have been
inserted with good = true. Algorithm B cannot fix this problem and must
abort.

If algorithm B was not forced to abort, it responds to the H-query with z.

Answering a G oracle query. To answer a G oracle query on (M,i,0) € {0,1}" x
N x D, B responds as follows.

1. If there has already been a G oracle query for (M, i, 0), there will be an entry
(M,i,0,z,good, 1) in the G-table. Algorithm B responds with z. This keeps
the oracle consistent if queried multiple times on the same input.

2. If i < 1ori > n, the query is not relevant to any signature. Algorithm 5 picks

> & D at random. Tt sets good < false, internal < false, and p < L.
It adds the entry (M, 1,0, z, good, internal, 1) to the G-table, and responds
with z.

3. Otherwise, we have i < i < n. Algorithm B searches its H-table for entries
matching (M’ = M, i’ =i, p/, 2, good’ = true, internal’, z'). There is at
most one such entry in the H-table.

If no matching entry is found, the query is not relevant to any signature.

Algorithm B picks z & E at random. Tt sets good < false, internal + false,
and p < L. It adds the entry (M, 1,0, z, good, internal, 1) to the G-table,
and responds with z.

Otherwise, algorithm B has found a matching entry (M’ = M, i/ =1, ', 2/,
good’ = true, internal’, ') in the H-table. The query now being handled
is relevant to an eventual signature if either (a) 2’ # 1 and o = 2’ or (b)
2’ = | and FEuvaluate(s*, o) = y*. In the latter case, algorithm B has just
learned the solution to the inversion problem it was posed. It stores the
solution ¢ in its global variable z*.

If the query now being handled is not relevant to any signature. Algorithm B

picks z & B at random. Tt sets good < false, internal < false,and p < L.
It adds the entry (M, 1,0, z, good, internal, 1) to the G-table, and responds
with z.

Otherwise, the query now being handled is relevant to an eventual signature

on the message M. Algorithm B picks z & F at random and sets good <—
true and p < p’ @ z. If this G oracle query was generated internally by B as
part of handling a signing query from A, algorithm B sets internal <— true.
Otherwise, B sets internal < false. It adds the entry (M,1,0, 2, good, 1) to
the G-table.

So long as i # n, algorithm B checks whether its answer to this query is
inconsistent with a previous query at level i+ 1 before returning. Algorithm B
searches its H-table for an entry matching (M” = M, i’ =i+1, u” = /P2,

2", good" = false, internal” = false, ). If such an entry exists, it was
inserted with good = false but should have been inserted with good = true.
Algorithm B cannot fix this problem and must abort.

If algorithm B was not forced to abort, it responds to the hash query with z.



Answering a signing oracle query. To answer a signature query on M € {0,1}",
B responds as follows.

Otherwise, for each 4 from 1 to n, algorithm B searches its H-table for entries
of the form (M’ = M, i’ =i, u', 2/, good = true, internal’ = false, z').
There will be at most one such entry in the H-table for each i. There will be
some index [ such that for all ¢ < I there is a matching entry in the table, and
for all 4 > I there is not. (It’s possible that there are no matching entries in the
H-table, in which case I is 0.)

For each i from 1 to n, algorithm B searches its G-table for entries of the form
(M" = M, i" =i, 0", 2", good" = true, internal” = false, y”). There will
be at most one such entry in the G-table for each i. There will be some index J
such that for all ¢ < J there is a matching entry in the table, and for all 7 > J
there is not. (It’s possible that there are no matching entries in the G-table, in
which case J is 0.) It must be the case that either J =1 —1or J = 1.

If I =0, algorithm B sets o7 - Op and py + Op.

Otherwise, if I > 0 and J = I, let (M’ = M, i' = I, 1/, ', good =
true, internal’ = false, 2’) be the matching entry in the G-table for i’ = I,
and let (M" = M, i" = J, 0", 2", good” = true, internal” = false, u'"’). be
the matching entry in the G-table for i = J = I. Algorithm B sets oy < ¢ and
pr < 1.

Otherwise, we have I > 0 and J = I — 1. Let (M' = M, i = I, i/,
2/, good' = true, internal = false, z') be the matching entry in the G-
table for ¢/ = I. If 2/ = 1, algorithm B does not know how to compute the
next block signature, and must abort. Otherwise, ' € D, and B sets oy « z'.
It makes an internal G oracle query for G(M,i,0r). This query ensures that
there is an entry in the G-table of the form (M” = M, ' = I, o", 2",
good” = true, internal” = true, ). Algorithm B sets uy < u”.

Now algorithm B repeats the following steps for each ¢ from I + 1 to n. It
makes an internal H oracle query for H (M, i, p;—1). This hash query ensures that
there is an entry in the H-table of the form (M’ = M, i =4, /' = p;—1, 2/,
good' = true, internal’ = true, x'). Algorithm B sets o; « 2. (Algorithm B has
set p;—1 to the value that will cause its hash oracle code to create an entry with
good’ = true and 2’ # L.) Algorithm B makes an internal G oracle query for
G(M,i,0;). This query ensures that there is an entry in the G-table of the form
(M" =M, i" =i, 0", 2, good" = true, internal” = true, p”). Algorithm B
sets p; < p’.

When the loop has finished, B returns (o, ft,) as the answer to the signature
query.

Handling the claimed forgery. Finally, algorithm A halts and emits a mes-
sage M* € {0,1}" and a claimed signature forgery o* on M. Algorithm .4 must
not have made a signing oracle query on message M*, or the forgery would be
trivial. Algorithm B attempts to parse o as (o7, u') € D x E. If parsing succeeds,
B attempts to verify the signature.

Algorithm B repeats the following steps for each i from n down to 1. Algo-
rithm B checks that the G-table includes an entry of the form (M"” = M*, i" =



4 1 . 1! .
i, o = of, 2, good" = true, internal”’ = false, p”). If there is no such

entry, A must not have queried its G oracle at G(M*,i,0}). Algorithm B
declares failure and aborts. Otherwise, G(M*,i,0f) = 2”. Algorithm B sets
pi_y « pf @ 2", Algorithm B then checks that the H-table includes an entry of
the form (M’ = M*, i’ =4, p/ = u;_,, 2/, good' = true, internal’ = false, 2’).
If there is no such entry, A must not have queried its H oracle at H(M™*, i, uf_;).
Algorithm B declares failure and aborts. Otherwise, H(M*,i,uf_ ;) = 2. Al-
gorithm B sets o} _; < Ewvaluate(s,0}) — 2z’ and continues to the next loop
iteration.

Assuming it completes the loop without aborting, B can tell whether the
claimed forgery o* is valid by checking whether o = 0p and uj = 0g.

Finally, B checks whether one of A’s hash queries revealed the answer to the
one-wayness challenge posed to B by examining its global variable z*. If that
variable still contains L, B declares failure. Otherwise B declares success: z* is
the value such that Evaluate(s*,x*) = y*.

"

Analysis of the simulator. We now analyze the performance of the simulator .
Suppose that A makes gs signing queries and g, hash queries, and produces a
valid forgery with probability €. There are six reasons why B might fail to break
the one-wayness of the trapdoor permutation family I7:

1. Algorithm B discovers, when handling a H oracle query at level i, that it
failed to mark a G oracle query at level ¢ as good.

2. Algorithm B discovers, when handling a G oracle query at level 7, that it
failed to mark a H oracle query at level 7 + 1 as good.

3. Algorithm B discovers, when verifying A’s claimed forgery, that A didn’t
query the H oracle at H(M™*, i, uf_) for some i.

4. Algorithm B discovers, when verifying A’s claimed forgery, that A didn’t
query the G oracle at G(M*, i, 07) for some i.

5. Algorithm 4 makes a signature query that B cannot answer because it would
require knowing the preimage of the challenge value y*.

6. Algorithm A produces a valid forgery but never made a hash oracle query
that revealed the preimage of the challenge value y*.

We can bound the likelihood of reasons 1 through 4 in a straightforward way. To
bound the likelihood of reasons 5 and 6, we will need to recall machinery by Guo
et al. [9].

We start by bounding reason 1. Algorithm B is handling an H oracle query
for H(M,i,u). For each M and 4, there is exactly one value of u that will
trigger a consistency check, with B examining its G-table for entries matching
(M" =M, i" =i, 0", 2", good” = false, internal”, u""). There is exactly one
value of ¢” in such an entry that would cause B to abort, and that this value
depends on a value that isn’t in A’s view: either ¢/ = z, with = chosen uniformly
at random as part of the query handling, or Evaluate(s*,c”) = y*, with y* not
previously revealed to A.

Let Q¢ (M, i) be the set of queries algorithm A makes to its G oracle of the
form G(M,i,-), i.e., the set of queries that can add a matching entry to G-table.



Then when algorithm A4 makes a query H (M, 4, ) with the one value of p that
triggers a consistency check, the probability that the consistency check will lead
B to abort is at most |Q¢(M,4)|/|D|, and the probability that B ever needs to
abort for reason 1, regardless of how many H oracle queries A makes, is at most

|QG(M»'L)| 1 . dc
EellL Ul L M) < e
2ol Tl 2 1= g

(Crucially, for each M and ¢ there is only one H(M,1,-) query that can trigger a
consistency check, and so Qg(M, %) is counted only once.)

We bound reason 2 similarly. Algorithm B is handling a G oracle query
for G(M,i,0). For each M and ¢, there is exactly one value of o that will
trigger a consistency check, with B examining its H-table for entries matching
(M" =M, i" =i+1, p, 2", good" = false, internal” = false, z”).

There is exactly one value of p” in such an entry that would cause B to abort,
and that this value depends on a value, z, that is chosen uniformly at random as
part of the query handling and isn’t in A’s view.

Let Qp(M,4) be the set of queries algorithm A makes to its H oracle of the
form G(M,i,-), i.e., the set of queries that can add a matching entry to G-table.
Then when algorithm A makes a query G(M,i,0) with the one value of ¢ that
triggers a consistency check, the probability that the consistency check will lead
B to abort is at most Qg (M, i+ 1)|/|E|, and the probability that B ever needs
to abort for reason 1, regardless of how many G oracle queries A makes, is at

most |Q (M 1)| )
H 7Z+ . qu
E _ = = — E M D <= .

To bound reason 3, we observe that if A did not query its H oracle at
H(M*,i,pf_ ) for some ¢ then the value of H(M™*,i, u}_ ) is uniformly random
and independent of A’s view, and therefore so is the correct value for 0. We
have already shown (in Section that only one signature on M™* will verify as
valid); it follows that only one value of o will be valid as part of a signature.
The value chosen (implicitly) by algorithm A is correct with probability 1/|D).

Similarly, to bound reason 4, we observe that if A did not query its G oracle
at H(M*,i,0¥) for some ¢ then the value of G(M™*,i,07) is uniformly random
and independent of A’s view, and therefore so is the correct value for uf. We
have already shown (in Section that only one signature on M* will verify as
valid); it follows that only one value of u} will be valid as part of a signature.
The value chosen (implicitly) by algorithm A is correct with probability 1/|F].

If A produces a valid forgery in an e fraction of runs when run in the
unforgeability experiment, it will produce a valid forgery without inducing a
reason-1 through 4 abort in at least an € — (¢¢ + 1)/|D| — (¢ + 1)/|E| fraction
of runs under B.

Now suppose that A, running under B, produces a valid forgery without
inducing a reason-1 through 4 abort. We review the H-table and G-table main-
tained by B. For each i, 1 <1i < n, we define the set M, as follows: a message



M € {0,1}" is included in M; if there is an entry (M’ = M, i’ =i, 1/,
2, good' = true, internal = false, ') in the H-table, for some ', 2/, and
x'. We further define the set M, as follows: a message M € {0,1}" is in-
cluded in M,y if there is an entry (M” = M, i = n, o”, 2", good’ =
true, internal” = false, y'’) in the G-table, for some o”, 2", and p".

Only an H oracle query made by A can cause a message M to be included
in M; for some i < n (because internal’ = false), and each H oracle query
made by A can add only one entry to the H-table. We therefore know that
Yo IM;| < gu. Only a G oracle query made by A can cause a message M
to be included in M,, 1 (because internal” = false), and each G oracle query
made by A can add only one entry to the G-table.

In handling a G oracle query G(M,i,-) with 1 < i < n, algorithm B will
add an entry to the G-table with good = true only if it finds a corresponding
entry in the H-table with M’ = M, i’ = i, and good = true. In handling
an H oracle query H(M,i,-) with 2 < i < n, algorithm B will add an entry
to the H-table with good = true only if it finds a corresponding entry in the
G-table with M’ = M, i’ = i — 1, and good’ = true. We therefore know that
My DMy D - DM, DO M,y Finally, since B produced a valid forgery on
some message M™* but did not induce a reason-2 abort, we know that M* € M,
for all i and, in particular, that M* € M,,;1. It follows that |[M,, 1| > 0.

We now restate two lemmas from Guo et al. [9].

Lemma 1 (Range Lemma [9]). Let ¢ and n be positive integers, and let
My, ..., My be sets satisfying |[IMq| < ¢, IMp41] >0, and My D My D -+ D
M, D M, 1. Then there exists an integer i* € [1,n] such that

‘Mi* < q(n+1fi*)/n and ‘Mi*+1| > q(nfi*)/n

Lemma 2 (Probability Lemma [9]). Let ¢ and n be positive integers, and let
My, ..., My be sets satisfying |Mq| < q, IMpy1| >0, and My D My D -+ D
My, 2 My 11. Fiz some arbitrary ordering on the elements of each set M;. Then
if an integer c* is chosen uniformly at random from the set [1,n] and an integer
k* is chosen uniformly at random from the set [Lq(”H_c*)/”] , the probability
that the k*th message in M~ is also in My 1 is at least 1/(nq1/”).

For the proofs of these lemmas, see Guo et al. [, Section 4]. Note that
the Probability Lemma follows from the Range Lemma: We have ¢* = i* with
probability 1/n, and conditioned on ¢* = i* the probability that a message
from M, with index k € [1,¢"17¢)/"] is also in M- 41 is at least

Mera] g m 1

|[1, q(rt1=e)/n]| = glnti=en)/n = gl/n

Setting ¢ = qz + 1, we have already shown that the sets My,..., M, 1
defined by the hash table maintained by B satisfy the preconditions of the
Probability Lemma in the case that A produces a valid forgery without inducing
a reason-1 through 4 abort.



When algorithm B starts running, it chooses ¢* uniformly at random from the
set [1,n] and k* uniformly at random from the set [1, g/ "]. It embeds the
challenge in the k*th entry in M«, where the arbitrary ordering on the elements
of the sets M.+ is the order of A’s H oracle queries that cause elements to be
added to M «.

In handling a signing query on a message M, algorithm B will find in its
H-table an entry of the form (M’ = M, i/ =i, y/, ', good = true, internal’ =
false, 2’) for each i, 1 <i < I, and will find in its G-table an entry of the form
(M" = M, i" =i, o”, 2", good" = true, internal” = false, u") for each i,
1 <i<J,where I <n andJ equalseither I —1 or I. In the case that [ = J = n,
algorithm B has all the information it needs to answer the signing query. In any
other case, it will make internal H oracle and G oracle queries in handling the
signing query. These internal queries will add entries to the H-table and G-table,
respectively, with good = true and internal = true, which will prevent the later
addition of entries with good = true and internal = false.

In the notation we have just introduced, any message M submitted by A to
its signing oracle will end up a member of Mj through M; and, if I = J = n, of
M, 11. A signing query on message M will induce a reason-5 abort if J =1 —1
and the H-table entry with M’ = M and #' = I has 2’ = L. This can happen
only if B chose to embed its inversion challenge in the response to a level-T
H oracle query for the message M, but A did not then make a corresponding
level-I G oracle query for the message M, revealing the solution to the inversion
challenge. And, provided that I < n, if A did not make a level-I G oracle query
for the message M it also did not make a level-(I + 1) H oracle query for the
message M. But B embeds its inversion challenge in the k*th entry in M. Put
another way: If the k*th message in M.~ is also in M- then no signing oracle
query will induce a reason-5 abort.

Finally, a reason 6 abort will occur if none of A’s G oracle queries revealed
to B the solution to the challenge it embedded in M, the k*th message in M.
If ¢* = n, then the presence of M in M, guarantees that A made a level-n
G oracle query for M, revealing the solution. If ¢* < n, then the presence of M
in M«41 guarantees that A made a level-(¢* + 1) H oracle query for M, which
means it must also have made a level-¢* G oracle query for M, likewise revealing
the solution. Put another way: If the k*th message in M.+ is also in M« 41,
then A will not be forced into a reason-6 abort.

Under Guo et al’s Probability Lemma, then, assuming that A, running
under B, produces a valid forgery without inducing a reason-1 through 4 abort,
no signing oracle query will induce a reason-5 abort and B will not be forced
into a reason 6 abort with probability at least 1/ (nql/ ”), where ¢ = gy + 1.
Thus if A produces a valid forgery in an € fraction of runs when run in the
unforgeability experiment, B will use A to solve a one-wayness challenge in at
least an (€ — (qo + 1)/|D| — (gu + 1)/|E|) / (n(guw + 1)*/™) fraction of runs.
Accounting for the running time incurred by B in answering A’s oracle queries,
we have proved the following theorem:



Theorem 1. Let IT be a (t',€')-one-way trapdoor permutation family over do-
main D. Then the short signature scheme on II is (t,qyx, 4, qs, €)-secure against
existential forgery under an adaptive chosen-message attack (in the random oracle
model) for allt and e satisfying

qc +1 gy +1
|D| £

e >n(gy + 1)V + and  t<t'—O(quy + qec + ngs) -

5 Instantiation with RSA

Lysyanskaya et al. explain how to use the RSA function to create a certified
trapdoor permutation [I2]. As usual, the permutation description consists of a
modulus N = pq, where p and q are two large primes, along with e, relatively
prime to ¢(N) = (p — 1)(¢ — 1). The trapdoor is d = e~! mod ¢(N). The
domain D is Z/NZ, and the permutation is evaluated as

m:x+— ¢ mod N and 7y y? mod N .

Two challenges remain.
First, we need 7(-) to be a permutation of all of Z/NZ, even if N and e were
maliciously generated. Lysyanskaya et al. extend = (-) as

m(x) =

z¢ mod N if z is relatively prime to NV
x otherwise

and extend 7~ !(-) similarly. If we knew that e is relatively prime to ¢(N), we
would be done. Unfortunately, this property is not easy to verify given just N and
e—indeed, it is intractable to verify when e < N'/4 assuming the phi-hiding
assumption holds, a fact used by Kakvi and Kiltz to build RSA full-domain
hash signatures with tight security reduction [I0]. Lysyanskaya et al., following
Micali, Ohta, and Reyzin [I3] and Cachin, Micali, and Stadler [5], propose to
require that e prime and larger than N, properties that are easy to check and
that are sufficient to guarantee that the extended 7(-) above is a permutation.
The downside to such large e is that applying 7 (-) takes time linear in loge,
which is why e = 65537 is frequently chosen in other applications of RSA.

Kakvi, Kiltz, and May observed that for prime e in the range NV itece< N
it is possible to use Coppersmith’s method to certify that e is relatively prime to
©(N) in time O(¢~®log? N) [I1]. Where verifiers are expected to process many
signatures for each signing key they encounter, using smaller e and Kakvi-Kiltz-
May certification instead of e > N should reduce overall running time.

Second, we must pick the group operation for the domain D = Z/NZ. It
cannot be X, because, e.g., p has no multiplicative inverse modulo N = pgq.
Instead, following Lysyanskaya et al., we pick + as our group operation.

Finally, we must select a group E. Here the only requirement is that (g +
1)/|E| be negligible. It is sufficient for F to consist of bit strings of length twice
the security parameter. At the 128-bit security level, for example, elements of
FE can be 256 bits long.
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