
Modeling a Bulletin Board Service based on
Broadcast Channels with Memory

Severin Hauser1,2, Rolf Haenni1

1 Bern University of Applied Sciences, CH-2501 Biel, Switzerland
{severin.hauser},{rolf.haenni}@bfh.ch

2 University of Fribourg, CH-1700 Fribourg, Switzerland
severin.hauser@unifr.ch

Abstract. The publication of the election data is fundamental for making
electronic voting systems universally verifiable. For this, voting protocols
usually rely on a secure bulletin board, which keeps track of the data
produced during the protocol execution. This paper presents a general
model for implementing such a bulletin board service. The design of
the model is based on the concept of an ideal broadcast channel with
memory, which transmits messages without loss of information to a
present or future receiver. The challenge of implementing a bulletin board
service is to approximate the properties of such an ideal channel to the
best possible degree. Our model contributes to a better understanding
of these properties and may help in designing future bulletin board
implementations.

1 Introduction

To achieve universal verifiability, all parties involved in a cryptographic voting
protocol must achieve an agreement on the public data created during the protocol
execution. This problem can be seen as a Byzantine agreement problem [17]. For
some voting contexts like boardroom voting, state-of-the-art Byzantine agreement
(or reliable broadcast) protocols are reasonable solutions. Unfortunately, for many
voting contexts these protocols are not well fitted for two reasons. First, these
protocols are not sufficiently efficient on a large scale with many computationally
limited parties. Secondly, the model for these protocols assumes that all honest
parties are available at the moment of the protocol execution. For parties such
as voters in real-world political elections, this is not a realistic assumption. Their
limited connectivity could even lead to the point where no agreement can be
achieved at all. Cryptographic voting is not the only application with this kind
of problems. Other applications that have to deal with similar problems are
online auctions or cryptographic currencies. From a more general viewpoint,
these applications can be regarded as secure multi-party computation problems
with a public audit, in which external auditors can check whether the protocol
output was computed correctly or not [2].

So instead of applying Byzantine agreement protocols, papers from the cryp-
tographic voting literature often refer to a broadcast channel with memory (BCM)

for making the public election data available to everyone. The existence of a BCM
is often assumed without providing a detailed definition of what a BCM is and
without specifying its properties [6,20]. The lack of proper definitions is a problem
for the general understanding of the cryptographic protocols and for analyzing
their security properties. To the best of our knowledge, the first proposal for a
formal BCM model has been published recently in [14]. According to this model,
which defines a BCM as an idealized theoretical construct, messages can be
transmitted instantaneously and without loss to a present or future receiver.

In a real-world implementation of a given cryptographic protocol, the the-
oretical model of a BCM can at best be approximated. A common approach
is to substitute the BCM with a service provided by one or more additional
protocol parties. The job of these parties is to receive and memorize the messages
transmitted over the broadcast channel during the protocol execution. A group of
parties providing this service is what we call bulletin board service (BBS). Its goal
is to guarantee that all submitted messages are recorded, that messages are never
deleted or modified, and that the order in which the messages appeared is tracked.
Bulletin board implementations with this property are called append-only. In
addition, some voting protocols require designated board sections for all involved
parties [6], while other protocols require that the board rejects messages that are
not well-formed [13]. When implementing a BBS, appropriate solutions for such
protocol-specific requirements need to be provided in addition to the append-only
property. Since a large amount of the available BBS literature focuses on provid-
ing solutions for a specific cryptographic protocol, distinguishing the properties
derived from the BCM and the ones introduced by the cryptographic protocol is
sometimes difficult.

1.1 Contribution and Paper Overview

In Section 2, we introduce formal definitions for various types of channels,
including a definition for a broadcast channel with memory. We summarize the
model presented in [14] and expand it with the concept of return-link channels.
Our definitions describe how such channels behave under ideal circumstances. As
such, they serve as a guideline for the design of a bulletin board service, which
mimics the ideal behaviour of a broadcast channel with memory under real-world
circumstances.

The main contribution of this paper is a proposal for a general BBS model,
which we introduce in Section 3. This model is derived from the BCM definition
with the goal of providing an analogous functionality and similar guarantees.
Based on the necessary communication channels to the rest of the system, we
identify several communication roles and describe the tasks and responsibilities
of parties fulfilling these roles. We illustrate the generality of the model with
some real-world examples.

1.2 Related Work

The idea of publishing the election data on a public bulletin board has a long
tradition in the literature of verifiable electronic voting. While almost every
existing cryptographic voting protocol uses a BBS as a central communication
platform between the parties involved, almost no paper describing such a protocol
gives a precise specification of the properties expected from the board. Usually,
the existence of an appropriate BBS is just taken for granted, but the BBS itself
remains a black box.

Given the importance of the bulletin board concept in electronic voting,
only a remarkably small number of specific papers is devoted to the problem
of specifying and implementing a BBS. Peters was one of the first to suggest
such a specification and solution [20]. His main focus was on making the bulletin
board robust against failures or attacks, using multiple peers and protocols
from the multi-party computation literature. In [15, 18], Heather and Lundin
made some proposals to ensure the append-only property and to solve the
resulting conflicts with the robustness property. Some reports on corresponding
implementations have been published later [3, 16]. Another description of a
practical BBS implementation is included in the report about the voting system
used in the state of Victoria, Australia [4]. In a follow-up paper [9], Culnane and
Schneider proposed a robust algorithm for a peered bulletin board and verified
its correctness formally. Recently Dold and Grothoff presented a Byzantine
consensus protocol that allows to synchronize a set of elements [10]. They use
it to implement the bulletin board for an e-voting system that is based on the
protocol proposed by Cramer et al. [7].

2 Broadcast Channel With Memory

Many cryptographic voting protocols in the literature assume the existence of a
broadcast channel with memory to achieve universal verifiability. The BCM is
used by the involved parties to exchange public data during the execution of the
protocol. Unfortunately, a proper formal definitions of the core functionalities
and properties of a BCM is often entirely missing. This lack of proper definitions
leads to problems in the understanding of the cryptographic protocols and their
security properties. In this section, based on the notion of a distributed system,
we give formal definitions of broadcast channels and broadcast channels with
memory. Our model is both a summary and an extension of the BCM model
proposed in [14].

2.1 Distributed Systems and Channels

A distributed system (Ω,Γ) consists of a finite set of parties Ω = {p1, . . . , pn} and
a finite set of channels Γ = {c1, . . . , cm}. The parties in this system exchange mes-
sages over the available channels to achieve some security (and other) objectives
in the context of a given problem domain. It is usually assumed that the channels

provide some properties such as authenticity or confidentiality. In our model of a
distributed system, we assume—as a general rule—that all channels are ideal.
This means that they are noiseless, possess unlimited capacity, and provide a
total message order. This implies that no message can be lost or modified during
transmission, that messages of arbitrary size are transmitted instantaneously,
and that no two messages can be sent at the exact same point in time.

Definition 1. A (ideal) channel c ∈ Γ of a distributed system (Ω,Γ) is defined
by a sender domain Sc ⊆ Ω (the parties that can send messages over c), a
receiver domain Rc ⊆ Ω (the parties that can receive messages over c), and a
message space Mc ⊆M (the messages that can be transmitted over c). If s ∈ Sc

transmits m ∈ Mc over c to Rc, then every r ∈ Rc receives m instantaneously
when m is sent. Parties p ∈ Ω \Rc not from the receiver domain can observe the
transmission of m over c, but can not learn any information about m itself (except
its length). On the other hand, parties p 6∈ Ω not belonging to the distributed
system do not have access to the channels and can therefore not even observe
the transmission of m.

The general definition of an ideal channel includes a number of useful limiting
cases, which are important in cryptographic protocols. We call c ∈ Γ a public
channel, if Sc = Ω. This means that every party in the system is able to send
messages over c. Similarly, c is called broadcast channel, if Rc = Ω.3 In this case,
every message transmitted is received by all parties in the system. If Sc = {s}
consists of a single sender s ∈ Ω, then c is an authentic channel. Receiving m
over such an authentic channel guarantees that s is the author of m. Similarly,
if Rc = {r} consists of a single receiver r ∈ Ω, then c is a confidential channel.
In this case, the channel guarantees that no party other that r learns anything
about m (beyond its length). If the sender and receiver domains are identical,
i.e., if Sc = Rc, we speak of a closed group channel. In this case, every member
of the closed group can send and receive messages over c.

Some of the above properties are mutually exclusive. For instance, a broadcast
channel can not be confidential and a public channel can not be authentic (except
for |Ω| = 1). On the other hand, there are a number of useful combinations that
are very common in cryptographic protocols. Most importantly, if c is authentic
and confidential at the same time, i.e., if both Sc = {s} and Rc = {r} consist
of a single party only, it is called a secure channel. A secure channel is called
untappable in the special case of Ω = {s, r}. This implies that no other party can
observe the transmission of messages between s and r.

Definition 2. A return-link channel is a channel c ∈ Γ of a distributed system
(Ω,Γ) that creates temporary return-links from every receiver r ∈ Rc of a

3 In the literature, broadcast channels are defined in many different ways, for example
as a (m,λ, . . . , λ) 7→ (m,m, . . . ,m), where λ denotes an empty message. Such a
broadcast functionality is an important building block for designing secure multi-party
computation protocols in the presence of active adversaries. Assuming a public-
key infrastructure, such broadcast channels can be implemented for any number of
malicious parties using a signature scheme [12].

transmitted message m ∈Mc to the sender s ∈ Sc of the message. Return-links
can be used by a receiver for sending a response ` ∈ Lc to the (possibly unknown)
sender s, where Lc denotes the message domain of the return-links created by c.
By submitting ` over the return-link, r does not learn more about s other than
s ∈ Sc. The transmission of ` from r to s is instantaneous and noiseless. Parties
other than s and r can observe the transmission, but they do not learn anything
about `.

Return links are expected to be available only for a short time after the
transmission of a message. The exact purpose of sending back a response is not
further specified, but in most cases it will be something like an acknowledgement,
receipt, status report, error message, etc. In protocols relying on such responses,
return-link channels are useful to reduce the total amount of necessary channels
between the parties. They are also useful to return the response directly to the
actual sender s ∈ Sc, even if Sc contains multiple parties and therefore s is
unknown to r. Return-links with such properties are widely available in the real
world, for example in the case of TCP connections. An example of a distributed
system with 10 parties and 3 channels is shown in Figure 1. Regular channels
are depicted as single-headed arrows and return-link channels as double-headed
arrows.

Fig. 1: Example of a distributed system with a confidential channel c1, a return-
link channel c2, and an authentic channel c3.

2.2 Broadcast Channel with Memory

In our ideal model of noiseless channels with unlimited capacities, we assume
that every submitted message reaches every receiver from the receiver domain
instantaneously, independently of the receiver’s actual availability and capacity
to process the incoming message. In a non-ideal setting, receivers might not
always be capable of processing the messages the moment they arrive. They
might even miss some incoming messages entirely. In cryptographic protocols,
in which broadcast channels are used to spread information to everyone, this
imperfection can cause complicated coordination problems.

To allow a receiver to recover from messages lost during the protocol exe-
cution, we introduce the concept of a channel with memory. The idea is that

the transmission of a message m ∈ Mc over a channel c ∈ Γ is performed by
two operations s : Sendc(m) and r : Mc ← Receivec(). The former is invoked
by the sender s ∈ Sc and the latter by the receiver r ∈ Rc. A channel with
memory guarantees that the messages and the order in which they have been
sent are stored and never lost. For this, the channel maintains an internal state,
called channel history Mc, which is initialized by Mc ← 〈〉 and updated by
Mc ←Mc‖〈m〉 each time a new message m ∈ Mc is sent. This idea is further
formalized in the following definition.

Definition 3. A channel c ∈ Γ of a distributed system (Ω,Γ) with sender
domain Sc ⊆ Ω and receiver domain Rc ⊆ Ω is called channel with memory, if
every s ∈ Sc can perform the operation s : Sendc(m) to send a message m ∈Mc

over the channel and every r ∈ Rc can perform r : Mc ← Receivec() to receive the
current channel history Mc ∈M∗c of all messages sent so far. An ideal channel
with memory has unlimited capacity, i.e., Mc can get arbitrarily large.

The concept of a channel with memory applies to all particular channel types
described before. For example, a broadcast channel with memory (BCM) gives
every party permanent access to all the messages sent over this channel. In an
authentic BCM, it is guaranteed that every message included in the channel
history has been sent by the same single sender. In a public BCM, the senders of
the messages are unknown within Ω (except for |Ω| = 1). Authentic and public
broadcast channels with memory are the most useful instances in cryptographic
voting protocols, for example to provide authentic broadcasting to the election
authorities and public broadcasting to the voters. If a protocol provides multiple
authentic broadcast channels with different senders, it may be necessary to
augment Definition 3 to support a common history over multiple channels. For
this, we refer to the definition of a bundled broadcast channel with memory
(BBCM), which additionally keeps track of the sender of every transmitted
message [14].

3 Bulletin Board Service

The concept of a BCM as described in the previous section is an idealized
theoretical construct, for which no one-to-one practical implementation exists
in the real world. For this reason, cryptographic protocols that require such
a channel need a substitution that provides an equivalent functionality and
similar guarantees. Knowing that the exact same properties of an ideal broadcast
channel with memory can at best be approximated by a practical implementation,
designing such a substitution is a very delicate problem on its own. A common
approach in the literature is to add one or multiple additional parties offering
the service of a bulletin board to the other parties of the distributed system. In
this section, we introduce a general model for such a bulletin board service (BBS).
We first describe the desired properties of a BBS and the basic functionality.
Then we introduce various roles for the parties involved and show how several
examples from the real world fit into the general model.

3.1 Guarantees

In Section 2, we introduced the concept of a BCM as a channel with ideal
properties. For a BBS to offer similar properties, we identified a number of
guarantees that seem to be crucial for a BBS to provide. Knowing that the
ideal BCM properties can at best be approximated, it is important to have
at least a clear understanding of some realistic goals and an overview of the
possibilities for reaching them. For each guarantee introduced below, we refer to
the corresponding BCM property, from which it is derived.

Authentication. This addresses the fact, that an ideal BCM c only allows parties
from its sender domain Sc to submit messages. For the BBS, this means that
the sender of a message must be authenticated to ensure that only messages
from parties belonging to the sender domain are accepted. If the authentication
evidence provided by the sender is transferable to third parties, it can be recorded
together with the message and forwarded to third parties on request. Digital
signatures are examples of such transferable authentication evidence, which
ensures sender authenticity without relying on trust in the BBS.

Non-Discrimination. When a message is transmitted over an ideal BCM, parties
are discriminated only with respect to the channel’s sender domain. Therefore,
the BBS needs to ensure that no party from the sender domain is excluded from
accessing the interface provided by the service for submitting a message. Similarly,
it must be ensured that no party is discriminated against retrieving the set of all
submitted messages. Known solutions for this are based on the assumption that
at least some of the parties responsible for accepting the incoming messages and
disseminating the recorded messages behave correctly.

Message Ordering. An ideal channel with memory records and returns the
transmitted messages in perfect chronological order. Therefore, the BBS has to
provide an equivalent mechanism which ensures a unique message ordering even
if a large amount of messages is submitted almost simultaneously. This message
ordering has to be immutable and everyone must be able to verify its correctness.
Since submitting messages over real-world channels always implies some delay
and the BBS might need time for processing them, implementing a perfect
chronological order is very difficult. Therefore, the goal of a BBS implementation
is to provide an order that approximates the perfect chronological ordering as
close as possible.

Message Well-Formedness The message space Mc of a BCM c restricts the type
and format of the transmitted messages. This restriction can be transferred easily
to a BBS by performing corresponding checks for each incoming message. Valid
messages m ∈Mc are accepted and recorded, whereas invalid messages m 6∈ Mc

are rejected.

Uniqueness. An ideal BCM c has a unique and unchangeable channel history Mc

consisting of all previously submitted messages in chronological order. Therefore,
the BBS also has to ensure that set of recorded messages is unique and can not
be altered, i.e., all parties retrieving the board content will receive compatible
views. More precisely, if two parties request the board content at two different
points in time t1 < t2, then the list of messages retrieved at t1 must be a prefix
of the list retrieved at t2.

Completeness. With an ideal BCM c, submitted messages are recorded instan-
taneously and added to the channel history without any delay. This implies
that the BCM always returns the complete channel history Mc of all messages
submitted so far. Therefore, a BBS also needs to ensure that submitted messages
are processed as quickly as possible and that requests are always responded with
the complete board content of all recorded messages. The maximal necessary
time for a message to be processed by the BBS is denoted by ∆. This value is an
important characteristics of a given BBS implementation.

3.2 Basic Model and Functionality

Let (Ω,Γ) be a distributed system with a single broadcast channel with memory
cBCM ∈ Γ . Replacing cBCM by a BBS means to introduce an extended distributed
system (Ω′, Γ ′), where Ω′ = Ω ∪ Φ denotes the extended set of parties and
Γ ′ = (Γ \ {cBCM}) ∪ Ψ the updated set of channels. The elements of Φ and Ψ
are called bulletin board parties and bulletin board channels, respectively. The
BBS must be designed in a way that all parties from ScBCM have access to a
channel in Ψ that connects them with the bulletin board parties for submitting a
message to the BBS. Similarly, all parties from Ω must have access to a channel
for receiving the channel history MBCM from the bulletin board parties. The
bulletin board parties themselves may be mutually connected over additional
(possibly authentic or confidential) channels to coordinate their current state of
memory. To accomplish the substitution of cBCM, it is crucial that Ψ introduces
no new channel with memory, i.e., that all channels in Γ ′ can be realized using
standard communication and network technology.

For a BBS to provide the same functionality as cBCM, it needs to provide
operations similar to SendcBCM(m) and ReceivecBCM(). To avoid confusion between
channel and service, we call them PostBBS(p) and GetBBS(), where p = (m,α)
contains the broadcast message m ∈ MBCM and some meta-data α ∈ A. The
purpose and format of α depends on the concrete realization of the BBS, but
it often contains some authentication evidence such as a digital signature, that
can be verified by third parties. The pair p itself is called post and the process of
submitting p to the BBS is called posting. If a party posts p to the BBS, it sends
it over one of the available bulletin board channels to one or multiple bulletin
board parties, which are responsible for the further processing of p.

To be as general as possible, we assume that posts are processed in blocks
b = ({p1, . . . , ps}, β), where β ∈ B denotes some meta-data added to the block by
the bulletin board parties. The main purpose of β is to provide some publishing

evidence such as a signed hash chain, which again can be verified by third parties.
Note that the posts included in a block are unordered. The internal processing
of a block b by the bulletin board parties is called publication of b.

Depending on the block size, there are different publication modes. If the
block size s is a fixed value for all blocks, it means that the incoming posts
are buffered until the block size is reached. If the blocks are created periodi-
cally, for example one block every minute, we obtain blocks of different sizes.
Corresponding publication modes are called buffered publication and periodical
publication, respectively. A fixed block size s = 1 is an important special case of
buffered publication, in which individual posts are published immediately. This
particular mode is called immediate publication. The selected publication mode
is an important characteristics of a concrete BBS implementation.

The bulletin board parties are responsible for keeping track of all the processed
blocks of posts. This internal state of the BBS consisting of all blocks is called
board history. One can think of it as an initially empty list B ← 〈〉, which is
updated to B ← B‖〈b〉 each time a new block b has been formed. This means
that B contains the list of all blocks published by the BBS so far. Therefore, B is
also the expected return value of GetBBS(), which then enables the derivation of
the channel history MBCM by extracting the messages from the individual posts
in the blocks. Note that immediate publication is the only mode that implies a
unique message ordering. This is because the order over the blocks is fixed and
in this case each block contains only one message.

3.3 Basic Roles

Every party involved in a BBS has a certain role with corresponding tasks. As the
specific roles and tasks depend greatly of the protocol used to run the BBS, we
can not introduce the roles and tasks in a general way. However, given the general
goal of providing two basic operations PostBBS(p) and GetBBS(), we identified
four basic communication roles, which depend on how a given bulletin board
party is involved in communicating with the main protocol parties. To provide
the basic functionality, the BBS must provide at least two channels, one for
collecting the posts submitted by parties from the sender domain ScBCM and one
for disseminating the board history to Ω. Without loss of generality, we assume
that both channels have a return-link (see explanations given below). An auxiliary
channel for broadcasting additional information about the current board state
may be necessary to achieve some of the guarantees. The receiver and sender
domains of these three channels define three different communication roles, which
we call collector, disseminator, and broadcaster. The channels are denoted by
cC , cD, cB ∈ Ψ , respectively.

Figure 2 shows the communication roles of the bulletin board parties and
illustrates how the parties interact with the rest of the system over the associated
channels. The figure also shows how these roles could overlap depending on the
protocol. Bulletin board parties not involved in the communication to the rest
of the system define an additional role. We call them associates and the set of
associates is denoted by ΦA. Below, we give a more detailed description of each

communication role, the interface they provide to the rest of the system, and the
attributed tasks.

Fig. 2: Illustration of the communication roles and channels of a BBS. Corre-
sponding sets of parties are denoted by ΦA, ΦB, ΦC , and ΦD. The channels cC
and cD each have a return-link. The channel cD is a public channel and the
channel cB is a broadcast channel.

Collector. The collectors are responsible for providing the PostBBS(p) operation
to the sender domain ScBCM of the BCM cBCM. Upon receiving a new post
p = (m,α) from a party of the sender domain ScBCM over the channel cC ,
the collectors have to check the authenticity and conformity of the message
m ∈ MBCM and the meta-data α ∈ A. In case some check fails, an error
message is returned over the return-link of cC to the sender and the procedure
aborts. Otherwise, p is added to the current block for further processing and
some response γ ∈ C (acknowledgment, receipt, status report, etc.) is sent
back to the sender. Returning such a response over the return-link extends
the signature of the Post-operation as follows:

γ ← PostBBS(p).

Disseminator. The disseminators are responsible for providing the GetBBS()
operation to the main protocol parties. To avoid unnecessary restrictions, we
extend the sender domain of cD from Ω to Ω′ = Ω∪Φ, which implies that cD
becomes a public channel in (Ω′, Γ ′). It can be used by every involved party
to submit a request for the current board history to the disseminators. The
return-link of cD is required for returning the current board history B to the
party requesting it. In addition to returning B, the BBS may also produce
and return some meta-data δ ∈ D concerning the request. The following
extended signature summarizes the Get-operation:

B, δ ← GetBBS().

Invoking this operation will always return the complete set of blocks of the
current board history, even if only some particular blocks or posts are of
interest. In a productive environment, where B could grow into a very large
set, this solution might not be very practical. Therefore, we propose an
extended Get-operation,

Bq, δ ← GetBBS(q),

which accepts a query q ∈ Q as input parameter. The query is applied to the
board history and only the subset Bq ⊆ B of blocks satisfying the query is
returned.

Broadcaster. As the disseminators act only on request, the spreading of the
board history B is somewhat limited. Since responding with B to a request is
like a commitment to the current board state, not getting requests over a long
period means that no commitments are made for a long time. Under such
circumstances, guaranteeing completeness is more difficult. Therefore, we
propose an additional broadcast channel cB for spreading information about
the board history to a larger group. The broadcasters are responsible for
using this channel, for example each time a new block is added to the board
history, or periodically, to broadcast some information φ = f(B) derived
from B to everyone (for example the current header of a hash chain).

Associate. The group of associates in a BBS only communicates internally
with the other bulletin board parties. They support the BBS in achieving
its guarantees, for example by issuing signatures for each newly added block.
They can also be in charge of maintaining the database, in which the current
board state is stored, or of replicating this database for backup purposes.

Some particular bulletin board parties may fulfill the additional role of a bulletin
board trustee. The set of all trustees is denoted by ΦT ⊆ Φ. They are responsible
for establishing the trust assumptions of the service, which are necessary for
providing the desired guarantees. We assume that each trustee is in possession of a
private signature key and that corresponding public keys are publicly known. An
important tasks of a trustee is to sign every change made to the board history, i.e.,
each time a new block is added. In this case, signatures issued by the trustees may
be added to the block’s meta-data β, possibly together with a digital time-stamp,
or they may be returned to the sender as part of the acknowledgment γ. In a
similar way, signatures may be created and added to the response δ whenever
a party requests the current board history B. Figure 3 shows an example of a
BBS with three collectors ΦC = {p1, t1, t3}, three disseminators ΦD = {p2, t2, t3},
three associates ΦA = {p3, t4, t5}, and one broadcaster ΦB = {p4}. There are five
trustees ΦT = {t1, t2, t3, t4, t5}.

3.4 BBS Examples

To show that the roles and guarantees introduced in this section can be applied to
existing BBS implementations and that they are useful for a better understanding,
we sketch here three examples and highlight their properties. An illustrative
overview of these examples and the parties involved is given in Figure 4.

Fig. 3: Example of a BBS with parties Φ = {p1, p2, p3, p4, t1, t2, t3, t4, t5} and
trustees ΦT = {t1, t2, t3, t4, t5}. We use red circles to represent trustees and black
dots for ordinary bulletin board parties.

Single-Party BBS. The setup as shown in Figure 4a is the simplest possible
one. It consists of a single trusted bulletin board party, which is responsible
for everything. This setting is comparable to a classical central database, which
stores the application data and responds to queries. Variations of this simple
setup can be found in many implementations of verifiable voting systems [1,5,11].
To guarantee important properties such as completeness, non-discrimination,
message-ordering, and uniqueness, this type of BBS relies completely on its single
party to be honest. In most practical systems, the decision to adopt such a simple
BBS design was due to lack of time or resources.

In most single-party implementations of this kind, posts are published im-
mediately, i.e., the block size is equal to 1. The maximal publication time ∆ is
therefore relatively low. In a proposal by Heather and Lundin [15], in order to
guarantee a unique message-ordering, the party submitting a post p = (m,α)
first retrieves the current hash chain header from the board and incorporates
it into α. The problem is that this may create race condition between multiple
parties trying to submit a post simultaneously.

Multi-Party BBS. A setup with multiple trusted bulletin board parties of the
same type often emerges from protocols that provide solutions to the Byzantine
Agreement Problem [17]. All parties are assumed to act identically, and as a
group, they are responsible for the proper functioning of the BBS. In the setup
shown in Figure 4b, all bulletin board parties act as collectors and disseminators.
To guarantee important properties such as completeness, message-ordering, non-
discrimination, and uniqueness, agreement protocols between the parties usually
require more than 2/3 of the involved parties to be honest. Such agreement
protocols are relatively complex and thus limit the throughput of the system.
Peters proposed a design of such a setup based on a protocol by Reiter [20,21],
and Beuchat presented an implementation of Peter’s approach [3]. An other

implementation is shown by Dold and Grothoff in [10]. They take a different
approach as they use a protocol that allows for agreement on sets of messages.
This way they only need to reach agreement between all bulletin board parties
at the end of the voting period.

Into this category also belong most of the blockchain implementations pre-
sented until today, for example the blockchain used in the digital currency
BitCoin [19]. There, so-called miners create a blockchain based on the proof of
work concept and with an average block size of approximately 1800 transactions
every ten minutes. This ensures uniqueness as long as the honest miners control
more than half of the computation power. Because BitCoin integrates the miners
into the protocol they also cover authentication and message well-formedness as
honest miners will only accept blocks containing valid transactions. The other
guarantees are addressed by different mechanics of the BitCoin protocol.

vVote System Bulletin Board. Culnane and Schneider presented in [9] a
BBS proposal for the vVote Verifiable Voting System [8]. As shown in Figure 4c,
they introduce parties of different types and for different roles. There is a group
of parties, called the peers, which act as collectors and trustees. Another party,
called the web bulletin board (WBB), acts as disseminator and is therefore
responsible for spreading the board history. Finally, a party called publisher uses
a traditional printed newspaper for broadcasting daily the current hash chain
header. By creating a new block only once a day, the protocol works with periodic
publication. Completeness is ensured by the fixed schedule of the block creation
and by the information printed in the newspaper. Uniqueness, non-discrimination
and message ordering are guaranteed as long as more than 2/3 of the peers are
honest.

(a) Single-Party BBS (b) Multi-Party BBS (c) vVote

Fig. 4: Examples of existing BBS implementations.

4 Conclusion

In this paper, we presented and extended formal definitions for various types
of channels. This also includes a broadcast channel with memory, which is
often required in cryptographic voting protocols. Since a broadcast channel
with memory has no direct implementation in the real world, it needs to be
substituted by something that is often called bulletin board. Based on our
definitions, we introduced a model for a bulletin board service. This model
describes the guarantees this service must provide and what kind of roles exists
inside the service. We showed that the model helps to understand existing bulletin
board implementations by discussing some examples.

Acknowledgments This research has been supported by the Hasler Foundation
(project no. 14028). We thank the anonymous reviewers for their reviews and
appreciate their valuable comments and suggestions.

References

1. Adida, B.: Helios: Web-based open-audit voting. In: Van Oorschot, P. (ed.) SS’08,
17th USENIX Security Symposium. pp. 335–348. San Jose, USA (2008)

2. Baum, C., Damg̊ard, I., Orlandi, C.: Publicly auditable secure multi-party compu-
tation. In: Abdalla, M., De Prisco, R. (eds.) SCN’14, 9th International Conference
on Security and Cryptography for Networks. pp. 175–196. LNCS 8642, Amalfi, Italy
(2014)

3. Beuchat, J.: Append-Only Web Bulletin Board. Master’s thesis, Bern University of
Applied Sciences, Biel, Switzerland (2012)

4. Burton, C., Culnane, C., Heather, J., Peacock, T., Ryan, P.Y.A., Schneider, S.,
Srinivasan, S., Teague, V., Wen, R., Xia, Z.: A supervised verifiable voting protocol
for the Victorian electoral commission. In: Kripp, M., Volkamer, M., Grimm, R.
(eds.) EVOTE’12, 5th International Workshop on Electronic Voting. pp. 81–94. No.
P-205 in Lecture Notes in Informatics, Bregenz, Austria (2012)

5. Clarkson, M.R., Chong, S., Myers, A.C.: Civitas: Toward a secure voting system.
In: SP’08, 29th IEEE Symposium on Security and Privacy. pp. 354–368. Oakland,
USA (2008)

6. Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient multi-
authority election scheme. In: Fumy, W. (ed.) EUROCRYPT’97, 16th International
Conference on the Theory and Application of Cryptographic Techniques. pp. 103–
118. LNCS 1233, Konstanz, Germany (1997)

7. Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient multi-
authority election scheme. European Transactions on Telecommunications 8(5),
481–490 (1997)

8. Culnane, C., Ryan, P.Y.A., Schneider, S., Teague, V.: vVote: A verifiable voting
system. ACM Transactions on Information and System Security 18(1), 3:1–3:30
(2015)

9. Culnane, C., Schneider, S.: A peered bulletin board for robust use in verifiable
voting systems. In: CSF’14, 27th Computer Security Foundations Symposium. pp.
169–183. Vienna, Austria (2014)

10. Dold, F., Grothoff, C.: Byzantine set-union consensus using efficient set reconcilia-
tion. In: Wicker, S.B., Engel, D. (eds.) ARES’16, 11th International Conference on
Availability, Reliability and Security. pp. 29–38. Salzburg, Austria (2016)

11. Dubuis, E., Fischli, S., Haenni, R., Hauser, S., Koenig, R.E., Locher, P., Ritter, J.,
von Bergen, P.: Verifizierbare Internet-Wahlen an Schweizer Hochschulen mit UniV-
ote. In: Horbach, M. (ed.) INFORMATIK 2013, 43. Jahrestagung der Gesellschaft
für Informatik. pp. 767–788. LNI P-220, Koblenz, Germany (2013)

12. Goldreich, O.: The Foundations of Cryptography – Volume II: Basic Applications.
Cambridge University Press (2004)

13. Haenni, R., Koenig, R.E.: A generic approach to prevent board flooding attacks
in coercion-resistant electronic voting schemes. Computers & Security 33, 59–69
(2013)

14. Hauser, S., Haenni, R.: Implementing broadcast channels with memory for electronic
voting systems. JeDEM – eJournal of eDemocracy and Open Government 8(3),
61–79 (2016)

15. Heather, J., Lundin, D.: The append-only web bulletin board. In: Degano, P.,
Guttman, J., Martinelli, F. (eds.) FAST’08, 5th International Workshop on Formal
Aspects in Security and Trust. pp. 242–256. LNCS 5491, Malaga, Spain (2008)

16. Krummenacher, R.: Implementation of a Web Bulletin Board for E-Voting Appli-
cations. Project report, Hochschule für Technik Rapperswil (HSR), Switzerland
(2010)

17. Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM Trans-
actions on Programming Languages and Systems 4, 382–401 (1982)

18. Lundin, D., Heather, J.: The robust append-only web bulletin board. Tech. rep.,
University of Surrey, Guildford, U.K. (2008)

19. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. Anonymous publica-
tion (2009)

20. Peters, R.A.: A Secure Bulletin Board. Master’s thesis, Department of Mathematics
and Computing Science, Technische Universiteit Eindhoven, The Netherlands (2005)

21. Reiter, M.K.: Secure agreement protocols: Reliable and atomic group multicast in
Rampart. In: CCS’94, 2nd ACM Conference on Computer and Communications
Security. pp. 68–80. Fairfax, USA (1994)

	Modeling a Bulletin Board Service based on Broadcast Channels with Memory

