
Weak-Unforgeable Tags for Secure Supply Chain
Management

Marten van Dijk, Chenglu Jin, Hoda Maleki,
Phuong Ha Nguyen, and Reza Rahaeimehr

University of Connecticut
{marten.van dijk, chenglu.jin, hoda.maleki,

phuong ha.nguyen, reza.rahaeimehr}@uconn.edu

Abstract. Given the value of imported counterfeit and pirated goods,
the need for secure supply chain management is pertinent. Maleki et al.
(HOST 2017) propose a new management scheme based on RFID tags
(with 2-3K bits NVM) which, if compared to other schemes, is com-
petitive on several performance and security metrics. Its main idea is
to have each RFID tag stores its reader events in its own NVM while
moving through the supply chain. In order to bind a tag’s identity to
each event such that an adversary is not able to impersonate the tag’s
identity on another duplicate tag, a function with a weak form of unforge-
ability is needed. In this paper, we formally define this security property,
present three constructions (MULTIPLY-ADD, ADD-XOR, and S-Box-
CBC) having this security property, and show how to bound the proba-
bility of successful impersonation in concrete parameter settings. Finally,
we compare our constructions with the light-weight hash function PHO-
TON used by Maleki et al. in terms of security and circuit area needed.
We conclude that our ADD-XOR and S-Box-CBC constructions have ap-
proximately 1/4−1/3 of PHOTON’s total circuit area (this also includes
the control circuitry besides PHOTON) while maintaining an appropri-
ate security level which takes care of economically motivated adversaries.

Keywords: light-weight Cryptography; Unforgeability; One-Time Hash
Function; Secure Supply Chain Management

1 Introduction

According to a recent report (in 2016) by the OECD and the EUs Intellectual
Property Office [1], the value of imported counterfeited and pirated goods is
worth nearly half a trillion dollars a year, which is around 2.5% of global imports
with many of the proceeds going to organized crime. Close to 5% of goods that
are imported into the European Union are fakes. The report analyses about half
a million customs seizures around the world during 2011-13 covering all kinds
of physical counterfeit goods (that infringe trademarks, intellectual property
rights, or copyright) in order to obtain rigorous estimates of the scale of trade in
counterfeit and pirated goods (online piracy is not included). These fake products

appear everywhere – the most dangerous ones are auto parts that fail, drugs
making people sick, medical instruments delivering false readings, etc.

It is of utmost importance to make supply chains secure in order to detect
counterfeit product injection into the supply chain. To this purpose, Radio-
Frequency Identification (RFID) tags are used as a low-cost wireless identifica-
tion method: Each product is equipped with an RFID tag which has a unique
identifier and which is initialized at the supply chain back-end server with corre-
sponding product information. In addition the RFID tag is either initialized with
digital keys used for future authentication or, if a Physical Unclonable Function
(PUF) is embedded, then read-out ‘challenge response pairs’ from the PUF at
the back-end server can later be used for authentication. A supply chain moves
through different supply chain partners that interact with RFID tags using RFID
readers. These interactions are collected/stored and are together analyzed at the
back-end server in order to detect whether the product is genuine or fake before
the product exits the supply chain.

1.1 NVM-Based Scheme

This paper focuses on the most recent state-of-the-art proposal by Maleki et al.
[2] for secure supply chain management based on RFID tags. Previous schemes
come in two kinds: A first kind [3–7] requires persistent online communication
between readers of supply chain partners and the back-end server. This, how-
ever, is in practice not always possible; sometimes the online connection does get
lost and even an hour communication disruption can delay product transporta-
tion leading to financial loss. In order to avoid the need for persistent online
communication, a second kind of scheme has been proposed which requires each
supply chain partner to implement a local database [8–11]. Local databases are
used as temporal storage to keep track of reader events. The local databases are
integrated into the back-end server at a suitable time when an online connection
with the back-end server is available.

The disadvantage of using local databases is that they need a reliable infras-
tructure and they must be maintained and secured. This imposes extra costs to
partners and makes the supply chain possibly less secure as these local databases
become an accessible point of attack. The main contribution of [2] is a new
method which does not require any persistent online communication and also
does not require local databases. Their idea is to distribute the local databases
into the RFID tags themselves by utilizing the 2-3K bit Non-Volatile Memory
(NVM) present in current off-the-shelve RFID tags [12]. This memory is suf-
ficient for storing all the reader events the RFID tag engages in. Only when
exiting the supply chain, the RFID tag is read out and verified by the back-end
server for which online communication is needed (a minimal requirement for any
scheme). The NVM-based scheme of Maleki et al. [2] is presented in detail in
Appendix A (with discussion of pros and cons).

1.2 Software Unclonable Functions

The main take-away of the NVM-based scheme is that in order to bind the
identity of an RFID tag to a reader event, the tag consumes one of its secret
keys k stored in its NVM in order to compute Fk(x) where input x is received
from the reader and cannot be distinguished from a random bit string. The tag
overwrites k with Fk(x) in its NVM – and in this way the tag authenticates its
own reader events stored in its NVM. For completeness, the reader represents
the reader event (which includes the identities of the reader and tag, and a time
stamp) as a bit string, which the reader MACs using its own key and this results
in x. The back-end server has in its database the key sequence of the tag (which
includes k) and the reader key; this is sufficient to verify the binding of the event
to the reader (through the MAC) and tag (through Fk(x)).

Maleki et al. [2] explain that it is sufficient to require that Fk(.) is a collision
resistant hash function – and they propose to use PHOTON 80/20/16, a light-
weight hash function costing 865 GE (Gate Equivalent). The complete solution
(including control logic etc.) costs 1428 GE. Juels and Weis [13] state (and
confirmed by [12]) “A basic RFID tag may have a total of anywhere from 1000-
10000 gates, with only 200-2000 budgeted specifically for security.” Also every
1000 gates costs approximately one dollar cent per tag. It is therefore important
to further reduce the gate equivalence of the complete solution. It turns out that
collision resistance is not required and this allows the design of a much more
light-weight Fk(.), which is the problem statement of this paper.

In the NVM-based scheme, Fk(.) is used to protect against an adversary who
can only access the tag through its read and write interface in order to gather
sufficient information to construct a ‘tag-simulator’ which can be programmed
into a fake tag. The read and write interface is such that after initialization only
the values that have replaced keys in NVM can be read out. This means that
in order to learn about one specific key k, an adversary can engage in a reader-
like interaction with the tag in order to replace k with Fk(x′) for some value
x′ of his choice. Next Fk(x′) can be read out and the pair (x′, Fk(x′)) can be
used to design a simulator for predicting Fk(x) for random input bit vectors x.
Modeling this (very) weak attacker leads to the definition of “software unclonable
functions” in [2] of which they only give collision resistant hash functions as an
instance. We notice that in the discussion above the adversary is only allowed
to use an RFID tag’s read and write interface according to its specifications.
An adversary who can circumvent the interface circuitry by means of a physical
attack is not considered.

1.3 Contributions and Organization

In Section 2 we take the definition of software unclonable functions and give an
equivalent definition in terms of a “software unclonable response game”. Next
we discuss its relation to the standard crypto notion of unforgeability for MACs
and we conclude that being software unclonable means “unforgeable for random
inputs when given one chosen input-output pair” – hence, the title of our paper.

We enrich the definition of software unclonability by adding a security measure
for worst-case scenarios in concrete parameter settings.

Sections 3, 4, and 5 provide very light-weight constructions. The first, called
MULTIPLY-ADD, is based on a simple multiplication with addition over in-
tegers. The second, called ADD-XOR, combines xor with addition-with-carry
over binary vectors. The third, called S-Box-CBC, uses the idea of Cipher Block
Chaining (CBC) mode with a specially designed S-box. In Section 6 we compare
the different solutions and we show ADD-XOR and S-Box-CBC lead to dramatic
reductions in total circuit size for reasonable security.

2 Software Unclonable Functions

Software unclonable functions are defined as follows:

Definition 1. [2] A keyed function Fk(.) is called software unclonable if the
probability of guessing the output of Fk(x) for a randomly chosen input x with
knowledge of one chosen input-output pair (x′, Fk(x′)) (the adversary chooses
x′) is less than negligible (in the function’s key size).

We notice that Definition 1 requires resistance against adversaries with un-
bounded computation – the definition formulates software unclonability in terms
of information theoretic security. This implies that a symmetric key encryption
scheme may not satisfy software unclonability since one chosen plaintext cipher-
text pair may reveal significant information about the underlying secret key
in the information theoretical setting. For a polynomial time adversary a se-
mantically secure symmetric key encryption scheme will be software unclonable.
Therefore, we recast the above definition for adversaries with polynomial com-
putation by using the software unclonable response game given in Algorithm 1,
where

– λ is a security parameter and Gen(1λ) is a ppt algorithm which generates a
random key k,

– A0 is a ppt adversarial algorithm which allows the adversary to generate
exactly one chosen input value x′

– for which the adversary is allowed to learn the output/response of function
Fk(x′),

– A1 is a ppt adversarial algorithm which takes just this one input-output pair
(x′, Fk(x′)) in order to produce a ppt simulator S, and

– where S successfully predicts Fk(x) for a random input x if it outputs Fk(x).

This leads to the following definition which we will use in our analysis in next
sections:

Definition 2. A function Fk(x) is software unclonable if for any ppt pair
(A0,A1), the probability that SoftwareUnclRespGame(A0,A1) (see Algo-
rithm 1 with security parameter λ) returns 1 is negl(λ).

Algorithm 1 Software Unclonable Response Game

1: function SoftwareUnclRespGame(A0,A1)
2: k ← Gen(1λ);
3: x′ ∈ {0, 1}λ ← A0(1λ);
4: S ← A1(x′, Fk(x′)); /* S is a ppt algorithm */
5: Random x ∈ {0, 1}λ
6: if Fk(x)← S(x) then b = 1; else b = 0; end if
7: Return b;
8: end function

Now, based on standard cryptography there are numerous cryptographic
functions which are software unclonable. Given our motivation we are only in-
terested in light-weight solutions in the sense that at most a couple 100 gates
should suffice for implementation. This implies that the primitive (as far as the
authors know) cannot be based on a computational hardness assumption. And
this means that we need to prove information theoretical security for our con-
structions after all (in Definition 2 algorithms A0, A1, and S do not need to be
restricted to ppt). As a consequence, since the adversary can use one λ-bit vector
equation representing an input-output pair for construction of a simulator, the
key must have size at least λ+O(λ) (as opposed to a symmetric key encryption
scheme which can have a λ-bit secret key).

2.1 Unforgeability

A closer look at Definition 2 shows the relation of a software unclonable function
to a Message Authentication Code (MAC): A MAC is a triple (Gen, Sign, V er)
of ppt algorithms where k ← Gen(1λ) with security parameter λ, t← Sign(k, x)
produces a tag t for input string x with key k, and V er verifies whether a tag
t fits input x with key k. A software unclonable function Fk(x) plays the role
of producing tags as in Sign. A first small difference is that Fk(.) is a function
and not an algorithm. This implies that verification of the tag is straightforward
in that the corresponding V er simply verifies whether tag t = Fk(x) (and this
directly implies the correctness property for a MAC).

The security of a MAC is defined as follows: A MAC is unforgeable if for all
ppt algorithms A,

Prob

k ← Gen(1λ),
(x, t)← ASign(k,.)(1λ) where A does not query Sign(k, x),
V er(k, x, t) = accept

 < negl(λ),

where ASign(k,.) denotes that A has access to oracle Sign(k, .).
The second difference with software unclonability is that the adversarial algo-

rithm is split into A0, which selects an x′ for querying oracle Sign(k, .) = Fk(.),
and A1 which, based on the output of the queried oracle, produces a simula-
tor S whose goal is to produce a valid (verifiable) tag Sign(k, x) = Fk(x) for

some random input x. This means that software unclonability does not allow
the adversary to adaptively choose an x for which a tag is constructed, instead
unforgeability is for tags of random inputs.

The third difference is that software unclonability does not allow the adver-
sary to have a polynomial number of queries to the oracle, instead only one cho-
sen input-tag pair can be used. We conclude that a software unclonable function
produces tags as in a MAC with a much weaker unforgeability property: a tag
corresponding to a random input is unforgeable given only one chosen input-tag
pair. The motivation presented in the introduction has led to the name “software
unclonable”. From a crypto perspective, however, a better terminology would be
“unforgeable for random inputs when given one chosen input-output pair” and
call the primitive a “one-time MAC for authenticating random (not chosen)
inputs.”

In a one-time MAC [14] a key is used at most once and can be constructed
using a universal hash function which is pairwise independent. An example light-
weight pairwise independent hash function is defined by tag t = k0x+k1 mod p,
where p is prime. In Section 3 we analyse the “MULTIPLY-ADD” function where
a tag is computed as k0x+k1 mod 2λ and the “key” (k0, k1) is chosen at random
(not necessarily odd).

2.2 Average vs. Worst-Case Analysis

Software unclonable functions are meant to be applied in RFID-based secure
supply chain management. Rather than just proving asymptotic results in the
form of the probability of a successful attack being negligible in λ, we want to
know a concrete upper bound on this probability as a function of λ. This will
allow us to suggest concrete parameter settings.

As we will explain below, Definition 2 talks about the average over ‘queries
x′ ← A0(1λ) to oracle Fk(.)’ of the probability of a successful prediction by the
simulator computed by S ← A1(x′, Fk(x′)). In asymptotic terms, if this average
is negligible, then it is not possible to have a significant worst-case probability γ0
of selecting an oracle query which leads to a simulator which also has a significant
probability ≥ γ1 of success, because γ0γ1 is at most average p which is negligible,

γ0γ1 ≤ p. (1)

In other words, either γ0 or γ1 must be negligible.
In this argument we did not specify the pair (γ0, γ1) and we note that

there are many possibilities. In the concrete non-asymptotic setting, we want
an achievable pair (γ0, γ1) for which both the probability γ0 of having a ‘lucky’
query as well as the probability γ1 of succesfull prediction by a simulator origi-
nating from ‘normal’ queries to be equally small: If we find such a pair, then we
know that both the worst-case probability γ0 is small as well as the probability
γ1 of success in the normal case is small. This is not captured by studying the
concrete asymptotic behavior of the average as a function of λ.

For example, if p = 2−λ, then the minimum α of max{γ0, γ1} over all possi-
ble/achievable pairs (γ0, γ1) could be realized by γ0 = γ1 = 2−λ/2 which meets

(1) with equality (the argument is in essence the application of the birthday para-
dox to our problem setting). This leads to a very different concrete parameter
setting compared to ‘just’ considering the average case.

So, we are still not entirely satisfied with Definition 2 when considering con-
crete parameter settings for the following reason: For A1 and x′ ∈ {0, 1}λ, let

p[A1](x′) = Probx←{0,1}λ(Fk(x)← S(x)|S ← A1(x′)). (2)

In Definiton 2 the probability p[A0,A1] that SoftwareUnclRe-
spGame(A0,A1) returns 1 (over random x and coin flips in A0, A1, and
S) is equal to the average

p[A0,A1] =
∑

x′∈{0,1}λ
Prob(x′ ← A0(1λ))p[A1](x′). (3)

In Definition 2 we only require that the average p[A0,A1] should be negligible
in λ. As explained above, we need to formulate security in terms of a worst-
case analysis. We may ask whether the adversary can be lucky (the worst-
case) and somehow select in A0 a x′ which “fits” k well in that p[A1](x′) is
(much) larger than the average p[A0,A1]. In order to analyze this we introduce
αh[A0,A1] as the probability (over coin flips used in A0 and A1) that game
SoftwareUnclRespGame(A0,A1) produces a simulator S which correctly
predicts Fk(x) ← S(x) with probability (over random x and coin flips in S)
≤ 2−h. We note that

αh[A0,A1] =
∑

x′:p[A1](x′)≤2−h
Prob(x′ ← A0(1λ)). (4)

We want both 2−h small and αh[A0,A1] large as this implies that (1) the prob-
ability that the adversary is able to construct a “lucky” simulator is equal to
1−αh[A0,A1], which is small, and (2) when the adversary constructs a “normal”
(i.e., “not lucky”) simulator, then the simulator correctly predicts Fk(x)← S(x)
with small probability ≤ 2−h. We can think of 1−αh[A0,A1] as the probability
mass of the tail of distribution p[A1](x′) that describes the lucky scenarios x′

for the adversary, i.e., the worst-case scenarios from a security point of view.
We want 1 − αh[A0,A1] and 2−h to be in balance and this leads to the

definition of
α[A0,A1] = min

h
max{1− αh[A0,A1], 2−h}. (5)

α[A0,A1] is the smallest value α with the property that the probability that game
SoftwareUnclRespGame(A0,A1) produces a simulator S which correctly
predicts Fk(x)← S(x) with probability > α is at most α, in formula,

α[A0,A1] = min

{
α : Prob

(
S ← A1(x′) such that
Prob(Fk(x)← S(x)) > α

)
≤ α

}
,

where the inner probability is over random x← {0, 1}λ and the outer probability
is over x′ ← A0(1λ).

Definition 3. For a software unclonable function Fk(x) we define the ‘average
exponential growth factor’

p = lim sup
λ→∞

−(log sup
(A0,A1)

p[A0,A1])/λ

and we define the ‘worst-case exponential growth factor’

a = lim sup
λ→∞

−(log sup
(A0,A1)

α[A0,A1])/λ,

where p[A0,A1] is a function of λ given by (2,3) and α[A0,A1] is a function of
λ given by (2,4,5).

A software unclonable function Fk(x) has better security if a is larger, and is
more light-weight if the gate equivalence of its circuit implementation is smaller.
In this paper we propose three constructions and compare them along these
metrics.

Notice that by (3, 4), p[A0,A1] ≥ (1− αh[A0,A1])2−h. Combined with (5),
this implies

α[A0,A1]) ≤ min
h

max{p[A0,A1]/2−h, 2−h} =
√
p[A0,A1]

(since h can be any real number; in the analysis of our constructions we consider
only integers h). This proves that the exponential growth factors p and a satisfy
a ≥ p/2. This argument is in essence the birthday paradox.

In the next sections we analyze for several candidate software unclonable
functions both p[A0,A1] as well as α[A0,A1] together with their exponential
growth factors. It turns out that for these functions the probability mass of the
tail of distribution p[A0](x′) is large so that a ≈ p/2.

3 MULTIPLY-ADD

Below we prove that the “MULTIPLY-ADD” function

F(k0,k1)(x) = k0x+ k1 mod 2λ, for k0, k1, x ∈ {0, 1}λ, (6)

where k0 and x are multiplied modulo 2λ and + modulo 2λ is binary addition
with carry truncated after λ bits, is a software unclonable function. In what
follows when we write + we mean addition modulo 2λ.

Theorem 1. For the MULTIPLY-ADD function defined in (6),

p[A0,A1] ≤ (λ+ 2)2−λ−1 and α[A0,A1] ≤ 2−b(λ−1)/2c

for all algorithm pairs (A0,A1) (unrestricted, the theorem does not require (A0,
A1), and produced simulators to be ppt). These upper bounds can be met with
equality, this implies average and worst-case exponential growth factors

p = 1 and a = 1/2.

Proof. We will first translate the problem of creating a simulator with maximum
possible successful prediction probability to an equivalent problem which we are
able to analyze precisely:

Suppose the adversary knows the pair (x′, F(k0,k1)(x
′)) and wants to built a

simulator which predicts F(k0,k1)(x) for random x. We notice that for

z = F(k0,k1)(x)− F(k0,k1)(x
′), v = k0, and w = x− x′,

z = vw mod 2λ. (7)

Also, notice that given x′, since x is random, w is random; and since k0 is random,
v is random. These observations can be used to show that predicting F(k0,k1)(x)
for a randomly selected input x based on (x′, F(k0,k1)(x

′)) where F is defined by
(6) is equivalent to (notice that k1 is unknown and random) predicting z in (7)
for a randomly selected input w and unknown/random v. This implies that the
probability of SoftwareUnclRespGame(A0,A1) returning 1 is equal to the
probability of ZWGameMA(A), see Algorithm 2, returning 1. This probability
is maximized for A outputting a simulator S which on input w outputs a z that
maximizes |{v : z = vw}|. In other words, z maximizes the number of collisions v
that yield the same z = vw. In formula, p[A0,A1] (where A0 and A1 are derived
from A according to the transformation described above) is equal to

2−λ
∑
w

max
z
Probv←{0,1}λ [z = vw] = 2−λ

∑
w

max
z

|{v : z = vw}|
2λ

. (8)

Algorithm 2 Finding z based on w

1: function ZWGameMA(A)
2: v ∈ {0, 1}λ is a random input;
3: S ← A(1λ);
4: w ∈ {0, 1}λ is a random input;
5: if S(w) = vw then
6: b = 1;
7: else
8: b = 0;
9: end if

10: Return b;
11: end function
12: /*On input w, an optimal S outputs a z which maximizes |{v : z = vw}|.*/

We will now analyze (8) by distinguishing the cases w 6= 0 and w = 0.
Let w 6= 0. If 2λ−h is the largest power of 2 dividing w, then z = vw mod 2λ

is equivalent to z = v(w/2λ−h) mod 2h. Since w/2λ−h is an odd integer, it has an
inverse modulo 2h. This implies that there is exactly one v = z(w/2λ−h)−1 mod
2h for which z = v(w/2λ−h) mod 2h. Therefore there are 2λ−h possible v for

which z = vw mod 2λ (these v are equal to z(w/2λ−h)−1 mod 2h plus some
multiple of 2h).

If w = 0, then only for z = 0 there exists a v such that z = vw; in this case
all 2λ possible v satisfy z = vw.

Let Wh, 1 < h ≤ λ, be the number of integers w, 0 < w < 2λ, for which 2λ−h

is the largest power of 2 dividing w. Define W0 = 1. Then (8) is equal to

2−λ
λ∑
h=0

Wh2−h.

We notice that Wh = 2h−1 for 1 ≤ h ≤ λ. Hence, (8) is equal to

2−λ(1 +

λ∑
h=1

2−1) = (λ+ 2)2−λ−1.

This proves p[A0,A1] = (λ+ 2)2−λ−1 and p = 1.
The above derivation also proves that the number of w for which

maxz Probv←{0,1}λ [z = vw] ≤ 2−h is equal to
∑λ
i=hWi = 2λ −

∑h−1
i=0 Wh =

2λ−(1+
∑h−1
i=1 2i−1) for h ≥ 2. The probability that such a w is selected is equal

to
∑λ
i=hWi/2

λ. This can be interpreted as

αh[A0,A1] =

λ∑
i=h

Wi/2
λ = 1− (1 +

h−1∑
i=1

2i−1)/2λ = 1− 2−(λ+1−h),

which in turn proves

α[A0,A1] = min
h

max{2−(λ+1−h), 2−h} = 2−b(λ−1)/2c and a = 1/2.

4 ADD-XOR

Below we prove that the “ADD-XOR” function

F(k0,k1)(x) = (k0 + x mod 2λ)⊕ k1, for k0, k1, x ∈ {0, 1}λ, (9)

where + modulo 2λ is binary addition with carry truncated after λ bits and
where ⊕ represents XOR, is a software unclonable function.

In appendix B of the full version [15], we prove the following theorem:

Theorem 2. For the ADD-XOR function as defined in (9),

p[A0,A1] ≤ 2−0.234·λ and α[A0,A1] ≤ 2 · 2−0.141·λ

for all algorithm pairs (A0,A1) (unrestricted, the theorem does not require (A0,
A1), and produced simulators to be ppt). This implies average and worst-case
exponential growth factors

p ≥ 0.234 and a ≥ 0.141.

Simulations with the optimal simulator constructed in [15] show that the
bounds for p and a are very tight. (Notice that for ADD-XOR, a > p/2.)

5 S-Box-CBC

In this section we introduce a construction which uses the idea of S-boxes in
block-cipher design together with CBC mode [16].

Suppose we have a non-linear mapping

S ∈ {0, 1}m → {0, 1}m,

where m is generally very small (we will propose small powers of two, m = 4
or m = 8). Mapping S is called an S-Box. Since we use a software unclon-
able function for authentication in the NVM-based supply chain management
scheme, this means that the software unclonable function does not necessarily
need to be invertible given knowledge of the keys. It turns out that ADD-XOR
and MULTIPLY-ADD are invertible; in this section, however, we will construct
a non-invertible software unclonable function based on a non-invertible S-box
mapping S.

Our construction is iterative following the design principle used in CBC mode
for symmetric key encryption (where we replace encryption by our S-box): For
n with nm = λ, we use the vector notation x = (x1, . . . , xn) ∈ {0, 1}λ with xi ∈
{0, 1}m. For keys k0 = (k01, k

0
2, . . . , k

0
n) and k1 = (k11, k

1
2, . . . , k

1
n) and input x, we

recursively compute

yi+1 = S(yi ⊕ xi+1 ⊕ k0i+1)⊕ k1i+1 (10)

for 0 ≤ i ≤ n− 1 with y0 = 0. We define

F(k0,k1)(x) = y. (11)

In the construction we mask input xi with k0i and we mask the output of the S-
box with k1i . The S-box is a kind of non-linear obfuscation mapping. Forwarding
yi into the computation of yi+1 corresponds to the main design principle used
in CBC mode for symmetric key encryption. Below we will prove (in a couple of
steps) that the S-box construction leads to a software unclonable function.

We start with analyzing the average case:

Theorem 3. Let F(k0,k1)(x) be defined by the S-Box-CBC construction in
(10,11) for λ = nm. For the S-box mapping S used in F , we define

ρ[S](w) = max
z∈{0,1}m

|{v : z = S(v)⊕ S(v ⊕ w)}|/2m, and

ρ[S] =
∑

w∈{0,1}m
ρ[S](w)/2m.

Then, for all algorithm pairs (A0,A1) (unrestricted, the theorem does not require
(A0, A1), and produced simulators to be ppt),

p[A0,A1] ≤ ρ[S]n with p = −(log ρ[S])/m.

Proof. We will first translate the problem of creating a simulator with maximum
possible successful prediction probability to an equivalent problem which we are
able to analyze precisely:

Suppose the adversary knows the pair (x′, y′ = F(k0,k1)(x
′)) and wants to

built a simulator which predicts F(k0,k1)(x) for random x. We notice that for
z = F(k0,k1)(x

′) ⊕ F(k0,k1)(x) the recursive definition of F in (10,11) implies
zi+1 = y′i+1 ⊕ yi+1 = S(y′i ⊕ x′i+1 ⊕ k0i+1) ⊕ S(yi ⊕ xi+1 ⊕ k0i+1). If we define
vi+1 = y′i⊕x′i+1⊕k0i+1, and wi+1 = (y′i⊕yi)⊕(x′i+1⊕xi+1) = zi⊕(x′i+1⊕xi+1),
then

zi+1 = S(vi+1)⊕ S(vi+1 ⊕ wi+1). (12)

Notice that given x′i+1 and y′i, since k0i+1 is random and y′i only depends on k0j
for j ≤ i, vi+1 is random. Therefore, by induction on i, given x′, v is random.
We also notice that given x′i+1 and zi, since xi+1 is random and zi only depends
on xj for j ≤ i, wi+1 is random. Therefore, by induction on i, given x′, w is
random.

The above observations can be used to show that predicting F(k0,k1)(x) for
a randomly selected input x based on (x′, F(k0,k1)(x

′)) where F is defined by
(10,11) is equivalent to (notice that k1 is unknown and random) predicting z in
(12) for a randomly selected input w and unknown/random v. This implies that
the probability of SoftwareUnclRespGame(A0,A1) returning 1 is equal to
the probability of ZWGameSB(A), see Algorithm 3, returning 1. This proba-
bility is maximized over A outputting a simulator S which on input w outputs
a z that maximizes |{v : ∀i zi+1 = S(vi+1) ⊕ S(vi+1 ⊕ wi+1)}|. In other words,
z maximizes the number of collisions v that satisfy the same set of equations
zi+1 = S(vi+1) ⊕ S(vi+1 ⊕ wi+1). In formula, p[A0,A1] (where A0 and A1 are
derived from A according to the transformation described above) is equal to

2−λ
∑
w

max
z
Probv←{0,1}λ [∀i zi+1 = S(vi+1)⊕ S(vi+1 ⊕ wi+1)]

= 2−λ
∑
w

max
z

|{v : ∀i zi+1 = S(vi+1)⊕ S(vi+1 ⊕ wi+1)}|
2λ

.

= 2−λ
∑
w

n−1∏
i=0

ρ[S](wi+1) =

n−1∏
i=0

∑
wi+1

ρ[S](wi+1)/2m = ρ[S]n. (13)

This concludes the proof of Theorem 3.
According to Theorem 3, the smaller ρ[S], the larger the average exponential

growth factor p. The next lemma shows a lower bound on ρ[S] and describes an
S-box S which meets this lower bound leading to the largest possible p for the
S-Box-CBC construction:

Lemma 1. (i) For any S-box S, ρ[S](w) ≥ 2/2m for w 6= 0. If w = 0, then
ρ[S](w) = 1. As a consequence ρ[S] ≥ (3 − 1/2m−1)2−m. This lower bound can
be met with equality: (ii) Let m ≥ 3. If we represent elements in {0, 1}m as finite
field elements in GF (2m) and define S(x) = x3 in GF (2m), then ρ[S](w) = 2/2m

for w 6= 0 and ρ[S] = (3− 1/2m−1)2−m.

Algorithm 3 Finding z based on w

1: function ZWGameSB(A)
2: v ∈ {0, 1}λ is a random input;
3: S ← A(1λ);
4: w ∈ {0, 1}λ is a random input;
5: if ∀izi+1 = S(vi+1)⊕ S(vi+1 ⊕ wi+1) then
6: b = 1;
7: else
8: b = 0;
9: end if

10: Return b;
11: end function
12: /*On input w, an optimal S outputs a z which maximizes |{v : ∀i zi+1 = S(vi+1)⊕

S(vi+1 ⊕ wi+1)}|.*/

Proof. Let z, v, w ∈ {0, 1}m (in the proof of the previous theorem z, v, w ∈
{0, 1}λ). The first part of the lemma follows immediately from the observation
that if z = S(v) ⊕ S(v ⊕ w) then v′ = v ⊕ w also satisfies this equation. If
w 6= 0, then v 6= v′ and this shows that if a solution v for z = S(v) ⊕ S(v ⊕ w)
exists, then there also exists a second different solution, hence, ρ[S](w) ≥ 2/2m.
If w = 0, then S(v) ⊕ S(v ⊕ w) = S(v) ⊕ S(v) = 0 for all v. As a consequence
ρ[S](0) = 2m/2m = 1 and ρ[S] ≥ 1/2m + (1− 1/2m)2/2m = (3− 1/2m−1)2−m.

In the second part of the lemma we take S(x) = x3 where we consider binary
vectors x ∈ {0, 1}m to represent elements in GF (2m). Notice that ⊕ becomes
addition in GF (2m). This means that the equation z = S(v)⊕S(v⊕w) translates
to z = v3 + (v + w)3 = v2w + vw2 + w3 in GF (2m). This is equivalent to

wv2 + w2v + (w3 + z) = 0,

a quadratic equation in v for w 6= 0 (notice that w2 does not reduce to a linear
expression in w since the irreducible polynomial defining GF (2m) has degree
≥ 3 for m ≥ 3). If w 6= 0, then the equation becomes v2 +wv+ (w2 + zw−1) = 0
which has at most 2 solutions, hence, ρ[S](w) = 2/2m.

Corollary 1. For the S-Box-CBC construction in (10,11) for λ = nm and the
S-box specified in Lemma 1(ii),

p[A0,A1] ≤ (3− 1/2m−1)λ/m2−λ and p = 1− log(3− 1/2m−1)

m

for all algorithms pairs (A0,A1) (unrestricted, the theorem does not require (A0,
A1), and produced simulators to be ppt). There exist algorithm pairs for which
the upper bound holds with equality.

We prove our result for the worst-case scenario in Appendix C in the full
version [15].

Theorem 4. For the S-Box-CBC construction in (10,11) for λ = nm and S-box
S specified in Lemma 1(ii),

α[A0,A1] ≤ λ(m− 1)

m(2m− 1)
2−

(m−1)2

m(2m−1)
λ with a =

(m− 1)2

m(2m− 1)
,

for all algorithms pairs (A0,A1) (unrestricted, the theorem does not require (A0,
A1), and produced simulators to be ppt). There exist algorithm pairs for which
the upper bound is almost tight. Notice that a is only slightly larger than p/2.

6 Comparison

Our theorems state for unbounded adversaries (we prove information theoretical
security as opposed to PHOTON which assumes computational hardness)

α[A0,A1] ≤ 2−b(λ−1)/2c for MULTIPLY-ADD,

α[A0,A1] ≤ 2 · 2−0.141·λ for ADD-XOR, and

α[A0,A1] ≤ λ(m− 1)

m(2m− 1)
2−

(m−1)2

m(2m−1)
λ for S-Box-CBC.

Table 1 lists for which λ the different constructions give rise to upper bounds
approximately equal to 2−16, 2−32, 2−40, and 2−64.

α[A0,A1] MULT.-ADD ADD-XOR S-Box-CBC S-Box-CBC PHOTON
m = 4 m = 8

λ = 33 λ = 121 λ = 60 λ = 48 N/A
≤ 2−16 1200b NVM 2960b NVM 1680b NVM 1360b NVM

≥ 726 GE 372 GE 440 GE 726 GE
(308+64) (277+163) (261+465)

λ = 65 λ = 243 λ = 112 λ = 88 N/A
≤ 2−32 1840b NVM 5360b NVM 2640b NVM 2160b NVM

≥ 1430 GE 478 GE 748 GE
(315+163) (283+465)

λ = 81 λ = 291 λ = 140 λ = 112 λ = 80
≤ 2−40 2160b NVM 6320b NVM 3280b NVM 2640b NVM 1200b NVM

≥ 1782 GE 764 GE 1428 GE [2]
(299+465) (563+865)

λ = 129 λ = 461 λ = 216 λ = 168 λ = 128
≤ 2−64 3120b NVM 9680b NVM 4720b NVM 3760b NVM 1680b NVM

1795 GE
(673+1122)

Table 1. Comparison light-weight constructions.

Since we want to prevent an adversary from successfully cloning an RFID
tag in order to tag and insert a counterfeit product into the supply chain, we

are actually fine with very small unconditional collision resistance. Even 2−16 is
acceptable for the following reason: Our constructions are unconditional secure in
that even an adversary with unbounded computational resources cannot create a
cloned RFID tag which can do better than answering future reader queries with
probability > 2−16. This implies that only one out of 64K inserted counterfeit
products makes it successfully through the supply chain. This is an economical
impractical proposition for the adversary.

One reason to have a higher collision resistance like 2−32 is if fake trapdoored
products are very cheap and the adversary wants to disrupt consumers of these
products, e.g., the military. In this case the adversary is not economically moti-
vated, he simply wants to be able to get a hardware footprint in order to be able
to launch future attacks. In this case a collision resistance of 2−32 would imply
an enormous number (4 billion) fake products needed by the adversary making
such an attack quite impractical. When we put our crypto-hat on, we may even
want the psychological safe collision resistance of 2−64.

For each solution, it is important to verify whether it fits the 2-3K bit NVM
requirement. A reader event is 40 bits [2] with a λ-bit output of the software
unclonable function, which will replace one 40-bit key for a one time pad in the
NVM based scheme and two λ-bit keys for our software unclonable constructions
– while PHOTON only needs one λ-bit key. Since the RFID NVM is assumed to
be read out per byte, we will round λ bits up to a multiple of bytes. Hence, for
each reader event, a total of 5 + 2dλ/8e} bytes in NVM are needed. Following
[2], we expect at most 10 reader events per path through the supply chain. This
gives a total of 10 · 8 · (5 + 2dλ/8e) required NVM bits. In bold are indicated
which entries violate the 2-3K bit requirement.

Table 1 also compares constructions (that do not violate the 2-3K bit NVM
requirement) with respect to the Gate Equivalence (GE) – measured in number of
2-input NAND gates – of their circuit implementations1. In the table “261+465”
under e.g. the S-Box-CBC entry for m = 8 and λ = 48 indicates that 465
GE is spend on the software unclonable function with its own control logic
and another 261 GE is spend on general control logic for a full NVM-based
supply chain management scheme implementation; 261 + 465 GE makes a total
of 726 GE. Appendix D in [15] lists and explains the optimal implementations
of each construction – we list the implemented results for ADD-XOR and S-
Box-CBC, and the estimated lower bound ≥ 22 ·λ GE for the MULTIPLY-ADD
construction.

PHOTON [17] has two light-weight variations: [2] uses PHOTON 80/20/16 as
software unclonable function. It takes 80 bits input and generates 80 bits output
with 40 bits collision resistance considering state-of-the-art attacks2. Table 1 also
shows PHOTON 128/16/16 with 64 bits collision resistance.

The shaded entries in Table 1 minimize the circuit area given a 2-3K bit
NVM constraint.

1 GE is a metric for comparing the size of hardware implementation regardless of the
manufacturing technology.

2 [2] states 64 bits collision resistance, but this is incorrect.

7 Conclusion

We introduced a formal definition of software unclonable functions and con-
structed several light-weight options with a rigorous security analysis. Our ADD-
XOR and S-Box-CBC (m = 4) constructions significantly reduce the circuit size
of the implementation of the NVM-based supply chain management scheme of
Maleki et al. [2] to 372 GE for α ≤ 2−16 and 478 GE for α ≤ 2−32. When com-
pared to PHOTON, S-Box-CBC (m = 8) gives the smaller area size of 764 GE
for α ≤ 2−40, while PHOTON 128/16/16 with 1795 GE is the preferred choice
for very small α ≤ 2−64. For an economically motivated adversary, it turns out
that α ≤ 2−16 offers sufficient protection.

A NVM-Based RFID Scheme

The NVM-based scheme of Maleki et al. [2] implements the following steps:

Initialization RFID tag The NVM of the RFID tag is initialized with a se-
quence of keys (k1, k2, . . . , ku) and a pointer p = 1. The back-end server
stores the RFID identity ID together with the sequence of keys.

Initialization Reader Each RFID tag reader is initialized with its own key
K. The back-end server stores the reader identity together with K.

Reader Event The RFID tag is read out by a reader of a supply chain partner:
1. The RFID tage transmits its ID to the reader.
2. The reader creates a message m which has the reader identity and time

stamp of the event.
3. The reader computes x = MACK(m, ID). This binds the reader to the

event.
4. The reader transmits (m,x) to the RFID tag.
5. The RFID tag receives (m,x). This triggers the RFID tag to read a next

key kp from its NVM and to increment pointer p by 1. Key kp is large
enough in order to be split up into a first part kp,0 and a second part
kp,1. The tag computes the pair yp = (m⊕ kp,0, Fkp,1(x)), where F is a
software unclonable function. Since kp is unique to the RFID tag, the
use of function F binds the RFID tag to the event. The key part kp,0

serves as a one time pad which prevents traceability.
6. The RFID tag stores yp at the spot where kp was stored in NVM.

Exit When the tag exits the supply chain, its NVM is read out and communi-
cated to the back-end server. I.e., the internal logic only allows NVM to be
read out up to but not including the address pointed at by pointer p. This
means that the back-end server receives ID together with (y1, . . . , yp−1).
The ID is used to look up the sequence of keys corresponding to the tag.
For each y, this allows the server to first reconstruct the messages m, second
to extract the corresponding reader identity with key K from its database,
third to compute the mac value x = MACK(m, ID), fourth to evaluate F
on x with the appropriate key, and finally verify that this is part of y. If
all checks pass, then the recorded reader events were not impersonated and

they can be verified to correspond to a legitimate path through the supply
chain. The server will invalidate the tag for future use in its database.

A detailed explanation, security analysis, and discussion around how to make
the scheme reliable with respect to miss reads and miss writes can be found in
[2].

A comparison of state-of-the-art schemes over a range of metrics can be found
in [18]. Besides being unique in that, unlike any other scheme, the need for persis-
tent online communication or local databases is avoided, the NVM-based scheme
also compares well with most competitive other schemes. The only dimension on
which the NVM-based scheme scores negatively is its lack of being able to re-
sist physical attack (where a strong adversary attempts to circumvent the read
and write interface in order to clone all the keys stored in NVM). We notice
that even though the trace based scheme [8] can withstand physical attacks,
the scheme cannot distinguish between a fake and legitimate tag which possi-
bly results in significant financial loss. Current PUF based schemes [19–21] are
not secure against physical attack because of recent machine learning modeling
attacks [22–24] – however, as soon as improved PUF designs will resist these
modeling attacks, PUF based schemes will resist physical attacks as opposed to
the NVM-based scheme. Inherent to current PUF-based schemes, they do need
persistent online communication. Also an improved PUF design will likely lead
to a higher gate count than the 500-1000 GE for current PUF-based schemes –
and this is where the NVM based scheme performs better as well.

As a final note, Section 6 discusses several upper bounds on the collision
resistance. Obviously, if the resistance is set to 2−32 or 2−64, then creating a
cloned or fake RFID tag which successfully passes the supply chain becomes very
unlikely. In fact too many counterfeit products labelled with fake RFID tags are
needed in order to be successful and this makes such an attack economically
infeasible. In the introduction we state “An adversary who can circumvent the
interface circuitry by means of a physical attack is not considered.” Clearly, the
weak link in the NVM-based scheme for high collision resistance will now be its
lack of resistance against physical attack.

References

1. OECD/EUIPO, “Trade in counterfeit and pirated goods:mapping the economic
impact.” [Online]. Available: http://dx.doi.org/10.1787/9789264252653-en

2. H. Maleki, R. Rahaeimehr, C. Jin, and M. van Dijk, “New clone-detection approach
for rfid-based supply chains,” in Hardware Oriented Security and Trust. IEEE,
2017.

3. J. Shen, D. Choi, S. Moh, and I. Chung, “A novel anonymous rfid authentica-
tion protocol providing strong privacy and security,” in Multimedia Information
Networking and Security (MINES). IEEE, 2010, pp. 584–588.

4. A. Ilic, M. Lehtonen, F. Michahelles, and E. Fleisch, “Synchronized secrets ap-
proach for rfid-enabled anti-counterfeiting,” in Demo at Internet of Things Con-
ference, 2008.

5. T. Dimitriou, “A lightweight rfid protocol to protect against traceability and
cloning attacks,” in Security and Privacy for Emerging Areas in Communications
Networks. IEEE, 2005, pp. 59–66.

6. K. Bu, M. Xu, X. Liu, J. Luo, and S. Zhang, “Toward fast and deterministic clone
detection for large anonymous rfid systems,” in Mobile Ad Hoc and Sensor Systems
(MASS). IEEE, 2014, pp. 416–424.

7. C.-H. Hsu, S. Wang, D. Zhang, H.-C. Chu, and N. Lu, “Efficient identity authen-
tication and encryption technique for high throughput rfid system,” Security and
Communication Networks, vol. 9, no. 15, pp. 2581–2591, 2016.

8. D. Zanetti, S. Capkun, and A. Juels, “Tailing rfid tags for clone detection,” in
NDSS, 2013.

9. D. Zanetti, L. Fellmann, S. Capkun et al., “Privacy-preserving clone detection for
rfid-enabled supply chains,” in RFID. IEEE, 2010, pp. 37–44.

10. F. Kerschbaum and N. Oertel, “Privacy-preserving pattern matching for anomaly
detection in rfid anti-counterfeiting.” in RFIDSec. Springer, 2010, pp. 124–137.

11. R. Koh, E. W. Schuster, I. Chackrabarti, and A. Bellman, “Securing the phar-
maceutical supply chain,” White Paper, Auto-ID Labs, Massachusetts Institute of
Technology, pp. 1–19, 2003.

12. G. EPCglobal, “Epc radio-frequency identity protocols generation-2 uhf rfid; spec-
ification for rfid air interface protocol for communications at 860 mhz–960 mhz,”
EPCglobal Inc., November, 2013.

13. A. Juels and S. A. Weis, “Authenticating pervasive devices with human protocols,”
in CRYPTO05, LNCS 3621. Springer, 2005.

14. G. J. Simmons, Authentication Theory/Coding Theory. Springer Berlin Heidel-
berg, 1985, pp. 411–431.

15. M. van Dijk, C. Jin, H. Maleki, P. H. Nguyen, and R. Rahaeimehr, “Weak-
unforgeable tags for secure supply chain management,” IACR Cryptology ePrint
Archive, 2017.

16. M. J. Dworkin, “Recommendation for block cipher modes of operation: The cmac
mode for authentication,” Special Publication (NIST SP)-800-38B, 2016.

17. J. Guo, T. Peyrin, and A. Poschmann, “The photon family of lightweight hash
functions,” Advances in Cryptology–CRYPTO 2011, pp. 222–239.

18. H. Maleki, R. Rahaeimehr, and M. van Dijk, “Sok: Rfid-based clone detection
mechanisms for supply chains,” in Proceedings of the Workshop on Attacks and
Solutions in Hardware Security(ASHES). ACM, 2017, pp. 33–41.

19. S. Devadas, E. Suh, S. Paral, R. Sowell, T. Ziola, and V. Khandelwal, “Design and
implementation of puf-based unclonable rfid ics for anti-counterfeiting and security
applications,” in RFID. IEEE, 2008, pp. 58–64.

20. P. Tuyls and L. Batina, “Rfid-tags for anti-counterfeiting,” in Topics in cryptology–
CT-RSA 2006. Springer, pp. 115–131.

21. D. Ranasinghe, D. Engels, and P. Cole, “Security and privacy: Modest proposals
for low-cost rfid systems,” in Auto-ID Labs Research Workshop, 2004.

22. S. Tajik, E. Dietz, S. Frohmann, J.-P. Seifert, D. Nedospasov, C. Helfmeier, C. Boit,
and H. Dittrich, “Physical characterization of arbiter pufs,” in International Work-
shop on Cryptographic Hardware and Embedded Systems. Springer, 2014.

23. G. T. Becker, “The gap between promise and reality: On the insecurity of xor
arbiter pufs,” in International Workshop on Cryptographic Hardware and Embedded
Systems. Springer, 2015, pp. 535–555.

24. U. Rührmair, F. Sehnke, J. Sölter, G. Dror, S. Devadas, and J. Schmidhuber,
“Modeling attacks on physical unclonable functions,” in Proceedings of the 17th
ACM conference on Computer and communications security, 2010, pp. 237–249.

